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Abstract

The paper presents an endogenous growth human capital based econ-
omy with endogenous velocity using the bank sector to produce exchange
credit. It derives a dynamic Taylor Condition that occurs as the cen-
tral bank stochastically supplies money. It then generates artificial data
and estimates the Taylor Condition 1000 times and presents the average
results. It shows that a "Taylor rule" emerges, even though the central
bank is merely satisfying fiscal needs through the inflation tax. It implies
that it would be spurious within this economy to associate the estimated
Taylor condition as the result of central bank interest rate targeting.

Preliminary Draft: We thank Hao Hong and Ceri Davies for research
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1 Introduction

Taylor and Wieland (2010) compares three central Taylor rules used

in the literature, the famous one proposed by Taylor (1993) him-

self, the Christiano, Eichenbaum and Evans (2005) version and the

Smets and Wouters (2007) version. They find that the interest rate

smoothing factor such as in the later two papers is not robust, nor

is the current or lagged output gap. But they conclude that

"Some degree of robustness can be recovered by using rules

without interest-rate smoothing or with GDP growth de-

viations from trend in place of the output gap",

and that averaging across models is a way to get the best perfor-

mance.

Issues about variables identified in Taylor rules, including the

Taylor "principle" of a greater than unity inflation coeffi cient, are

addressed in this paper from a very different perspective that ususal.

It might be in the realm of the perspective of McCallum (2008) in

which he introduces the concept of a "well-formulated" (WF) model

for considering issues such as the Taylor rule. And equally it is about

the debate presented in Cochrane (2011) about the ability of Taylor

rules to identify suffi ciently what is the underlying inflation process.

This paper will derive a Taylor condition from a general equi-

librium endogenous growth economy, thereby satisfying both the

"well-formulated" McCallum concept of a Taylor rule, and the clear

identification of the unique underlying inflation process on which

Cochrane focuses. This combines both Taylor rules and money sup-

ply rules in a way seen relatedly in Alvarez, Lucas andWeber (2001).

A central theoretical result is that the Taylor principle, of a

greater than one inflation coeffi cient, only holds in theory for when

money velocity is greater than one. Only at the Friedman optimum
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of a zero nominal interest rate, along the balanced growth path

(BGP) equilibrium, does this coeffi cient fall to one, as in the Fisher

equation of interest rates. For BGP nominal interest rates greater

than one, velocity is greater than one as exchange credit produced

in a banking sector is used to avoid the inflation tax. In addition, a

velocity term enters the Taylor condition again as long as the BGP

nominal interest rate is above the Friedman optimum of zero, in

a way reminiscent of McCallum’s (1999) emphasis on using money

demand in a reduced "central bank policy model", and the bias that

can result without it.

The paper then calibrates the economy and estimates the de-

rived Taylor equilibrium condition using an average of 1000 series

of artificially simulated data. Estimation results are presented for

the Taylor condition using four different data filters for compari-

son, and using both OLS and instrumental variables. In addition to

the correct Taylor condition, two counter-theoretical Taylor condi-

tions that arbitrarily drop some variables are also estimated to show

how missing variable bias misspecification may manifest itself when

the data used is still the artificially simulated data of the original

model. Results show the successful estimation of the Taylor con-

dition in terms of the Taylor principle on the inflation rate being

robust in both theory and in the estimation. In addition all other

coeffi cients are significant and of the correct sign as in theory, with

some striking closeness of most of the parameters to the theoreti-

cal values. When velocity is excluded from the estimation as in a

standard Taylor rule estimation, the estimation results based on the

model’s simulated data find an inflation coeffi cient below one.

The forward looking interest rate term is robustly significant in

the correct estimated model specification for band pass filters. In

our model this corresponds to the interest smoothing term that is

discussed as not robustly significant in Taylor and Wieland (2010).
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Yet, when we used the "wrong" but traditional "output gap" term,

as an experiment, or a traditional Taylor rule specification without

velocity, the interest smoothing term is indeed mostly not signifi-

cant. And regarding the output gap measure per se as in the above

Taylor and Wieland quote, our "measure" in the derived Taylor con-

dition differs as it is the deviation of consumption growth from the

BGP "trend" rate; and this is robustly significant. Alternatively

we show theoretically how the output growth deviation from the

BGP rate can enter the Taylor condition instead of consumption,

but only with an additional term involving investment growth. Fur-

ther we counter-theoretically include estimation of the model with

just one change: incorrectly using output growth deviation instead

of consumption growth deviation; this weakens the robustness of the

model’s results.

Besides the interesting role of money velocity growth, the growth

in "productive hours worked" also enters our equilibrium endoge-

nous growth Taylor condition. This variable is a combination of

what can be construed as the labor force participation rate plus the

fraction of time spent increasing productivity; and it shows robust

significance in estimation. This is not inconsistent with the essence

of what Canova et al. (2009) writes:

"...the standard per-capita hours series displays long but

essentially stationary cycles. These cycles are of longer

duration than those considered in the business cycle liter-

ature and may reflect, for example, demographics, trends

in labor market participation or R&D activities. This pa-

per argues that disregarding them (as one would do by

taking hours in levels) or by taking a rough short cut (as

one would do by differencing the series) leads to misspec-

ification, effi ciency losses, and potentially uninterpretable
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results."

Estimating the derived Taylor Condition 1000 times from the ar-

tificial data, the "Taylor rule" emerges even though the central bank

is merely satisfying fiscal needs through the inflation tax. The Tay-

lor principle fails when significant changes from the model’s Taylor

condition are imposed. This implies the central point of the paper:

that it would be spurious within this economy to associate the es-

timated Taylor condition as the result of central bank interest rate

targeting, since in the model the central bank merely stochastically

prints money.1 Second, failure of the so-called Taylor principle in

some estimations may be a simple result of model misspecification.

Further, within the standard flexible price world of this paper’s econ-

omy, the Taylor principle holds because of a higher than Friedman

optimal money supply growth rate, inflation rate, and velocity of

money, rather than being due to an actively aggressive interest rate

targeting policy by a central bank.

2 Stochastic Endogenous Growth with Banking

The representative agent economy is as in Benk et al (2008, 2010)

but with a decentralized the bank sector that produces credit as in

Gillman and Kejak (2011). By combining the business cycle with

endogenous growth, stationary inflation lowers the output growth

rate as supported empirically for example in Gillman, Harris and

Matyas (2004) and Karanasos (2006). Further money supply shocks

can cause inflation at low frequencies as in Haug and Dewald (2011),

and as supported in Sargent and Surico (2008, 2011), which can lead

to output growth effects if the shocks are persistent and repeated.

This allows shocks over the business cycle to cause changes in growth
1We are indebted for this approach to a suggestion made by Warren Weber; see also Alvarez

et al. (2001).
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rates and in stationary ratios. The shocks to the goods sector pro-

ductivity and the money supply growth rate are standard, while the

third shock to the credit sector productivity exists by virtue of the

model’s endogeneity of money velocity via the production function

used extensively in the financial intermediation microeconomics lit-

erature starting with Clark (1985).

The shocks occur at the beginning of the period, observed by the

consumer before the decision process, and follow a vector first-order

autoregressive process. For goods sector productivity, zt, the money

supply growth rate, ut, and bank sector productivity, vt :

Zt = ΦZZt−1 + εZt, (1)

where the shocks are Zt = [zt ut vt]
′, the autocorrelation matrix

is ΦZ = diag {ϕz, ϕu, ϕv} and ϕz, ϕu, ϕv ∈ (0, 1) are autocorrelation

parameters, and the shock innovations are εZt = [εzt εut εvt]
′ ∼N (0,Σ) .

The general structure of the second-order moments is assumed to

be given by the variance-covariance matrix Σ. These shocks affect

the economy as described below.

2.1 Consumer Problem

A representative consumer has expected lifetime utility from con-

sumption of goods, ct, and leisure, xt; with β ∈ (0, 1) and θ > 0,

this is given by

U = E0

∞∑
t=0

β
(ctx

ψ
t )1−θ

1− θ . (2)

Output of goods, yt, and increases in human capital, are pro-

duced with physical capital and effective labor each in Cobb-Douglas

fashion; the bank sector produces exchange credit using labor and

deposits as inputs. Let sGt and sHt denote the fractions of physical

capital that the agent uses in the goods production (G) and human
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capital investment (H), whereby

sGt + sHt = 1. (3)

The agent allocates a time endowment of one amongst leisure,

xt, labor in goods production, lt, time spent investing in the stock

of human capital, nt, and time spent working in the bank sector,

denoted by ft:

lt + nt + ft + xt = 1. (4)

Output of goods can be converted into physical capital, kt, with-

out cost and so is divided between consumption goods and invest-

ment, denoted by it, net of capital depreciation. Thus, the capital

stock used for production in the next period is given by:

kt+1 = (1− δk)kt + it = (1− δk)kt + yt − ct. (5)

The human capital investment is produced using capital sHtkt and

effective labor ntht:

H(sHtkt, ntht) = AH(sHtkt)
1−η(ntht)

η. (6)

And the human capital flow constraint is:

ht+1 = (1− δh)ht +H(sHtkt, ntht). (7)

With wt and rt denoting the real wage and real interest rate, the

consumer receives nominal income of wages and rents, Ptwt (lt + ft)ht

and Ptrt (sGt + sQt) kt, a nominal transfer from the government, Tt,

and dividends from the bank.

The consumer buys shares in the bank by making deposits of

income at the bank. Each dollar deposited buys one share at a

fixed price of one, and the consumer receives the residual profit of

the bank as dividend income in proportion to the number of shares

(deposits) owned. Denoting the real quantity of deposits by dt, and
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the dividend per unit of deposits as RQt, the consumer receives a

nominal dividend income of PtRQtdt. The consumer also pays to the

bank a fee for credit services, whereby one unit of credit service is

required for each unit of credit that the bank supplies the consumer

for use in buying goods. With PQt denoting the nominal price of each

unit of credit, and qt the real quantity of credit that the consumer

can use in exchange, the consumer pays PQtqt in credit fees.

With other expenditures on goods, of Ptct, and physical capital

investment, Ptkt+1 − Pt(1 − δk)kt, and on investment in cash for

purchases, of Mt+1 −Mt, and in nominal bonds Bt+1 − Bt(1 + Rt),

the consumer’s budget constraint is

Ptwt (lt + ft)ht + PtrtsGtkt + PtRQtdt + Tt (8)

≥ PQtqt + Ptct + Ptkt+1 − Pt(1− δk)kt +Mt+1 −Mt

+Bt+1 −Bt(1 +Rt).

The consumer can purchase the goods by using either money Mt

or credit services. With the lump sum transfer of cash Tt coming

from the government at the beginning of the period, and with money

and credit equally usable to buys goods, the consumer’s exchange

technology is

Mt + Tt + Ptqt ≥ Ptct. (9)

Since all cash comes out of deposits at the bank, and credit pur-

chases are paid off at the end of the period out of the same deposits,

the total deposits are equal to consumption. This gives the con-

straint that

dt = ct. (10)

Given k0, h0, and the evolution of Mt (t ≥ 0) as given by the

exogenous monetary policy in equation (18) below, the consumer
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maximizes utility subject to the budget,exchange and deposit con-

straints (8)-(10).

2.2 Banking Firm Problem

The bank produces credit that is available for exchange at the point

of purchase. The bank determines the amount of such credit by

maximizing its dividend profit subject to the labor and deposit costs

of producing the credit. The production of credit uses a constant

returns to scale technology with effective labor and deposited funds

as inputs. In particular, with AQ > 0 and γ ∈ (0, 1),

qt = AF e
vt (ftht)

γ d1−γ
t , (11)

where AF evt is the stochastic factor productivity.

Subject to the production function in equation (11), the bank

maximizes profit ΠFt with respect to the labor ft and deposits dt:

ΠFt = PFtqt − Ptwtftht − PtRFtdt. (12)

Equilibrium implies that(
PFt
Pt

)
γAF e

vt

(
ftht
dt

)γ−1

= wt; (13)

(
PFt
Pt

)
(1− γ)AF e

vt

(
ftht
dt

)γ
= RFt. (14)

These indicate that the marginal cost of credit,
(
PFt
Pt

)
, is equal

to the marginal factor price divided by the marginal factor prod-

uct, or wt

γAF evt
(
ftht
dt

)γ−1 , and that the zero profit dividend yield paid
on deposits is equal to the fraction of the marginal cost given by(
PFt
Pt

)
(1− γ)

(
qt
dt

)
.
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2.3 Goods Producer Problem

The firm maximizes profit given by yt − wtltht − rtsGtkt, subject to
a standard Cobb-Douglas production function in effective labor and

capital:

yt = AGe
zt(sGtkt)

1−α(ltht)
α. (15)

The first order conditions for the firm’s problem yield the following

expressions for the wage rate and the rental rate of capital:

wt = αAGe
zt

(
sGtkt
ltht

)1−α

, (16)

rt = (1− α)AGe
zt

(
sGtkt
ltht

)−α
. (17)

2.4 Government Money Supply

It is assumed that the government policy includes sequences of nom-

inal transfers which satisfy:

Tt = ΘtMt = (Θ∗ + eut − 1)Mt, Θt = [Mt −Mt−1]/Mt−1. (18)

where Θt is the growth rate of money and Θ∗ is the stationary gross

growth rate of money.

2.5 Definition of Competitive Equilibrium

The representative agent’s optimization problem can be written re-

cursively as:

V (s) = max
c,x,l,n,f,sG,q,d,k′,h′,M ′

{u(c, x) + βEV (s′)} (19)

subject to the conditions (3) to (10), where the state of the economy

is denoted by s = (k, h,M,B; z, u, v) and a prime (’) indicates the

next-period values. A competitive equilibrium consists of a set of

9



policy functions c(s), x(s), l(s), n(s), f(s), sG(s), q(s), d(s), k′(s),

h′(s), M ′(s), B′ (s) pricing functions P (s), w(s), r(s), RF (s), PF (s)

and a value function V (s), such that:

(i) the consumer maximize utility, given the pricing functions and

the policy functions, so that V (s) solves the functional equation (19);

(ii) the goods producer maximizes profit similarly, with the re-

sulting functions for w and r being given by equations (16) and

(17);

(iii) the bank firm maximizes profit similarly in equation (12)

subject to the technology of equation (11)

(iv) the goods, money and credit markets clear, in equations (8)

and (15), and in (9), (18), and (11).

3 General Equilibrium Taylor Condition

The model’s derived exact functional form of what we can here the

"Taylor condition" closely shares many properties from the Taylor

rules proposed in the literature. In this context, we show how the

inclusion of endogenous growth and/or the banking sector leads to

modified Taylor rules. We estimate the main Taylor condition plus

several of these other rules in what are counter—theoretical based

estimations. The idea emerges that a suffi ciently rich flexible price

economy model can provide an encompassing structure for the Tay-

lor condition that may be able, in turn, to serve as a benchmark for

optimal policy, rather than using any of a host of various rigid and

flexible price models that then exogenously add in some form of a

Taylor rule.

Starting from the first-order conditions of the model, we get

1 = βEt

{
c−θt+1x

ψ(1−θ)
t+1

c−θt x
ψ(1−θ)
t

R̃t

R̃t+1

Rt+1

πt+1

}
,
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where R and π are gross rates of nominal interest and inflation,

respectively, where R̃t is defined below as

R̃t ≡ Rt − (1− γ)

(
1− mt

ct

)
(Rt − 1) ,

and where mt
ct
is the normalized money demand, or called the "con-

sumption velocity of money".

With log-linearization around the BGP, notationally first con-

sider in general for the variable z that a lack of a time subscript

indicates the BGP stationary value; ẑt ≡ ln zt − ln z; and ĝz,t+1 ≡
ln zt+1 − ln zt, which is approximately the growth rate of z at time

t+ 1 for small z. This then gives that

0 = Et

{
θĝc,t+1 − ψ (1− θ) ĝx,t+1 + ĝR̃,t+1 + π̂t+1 − R̂t+1

}
Rearranging with R̂t on the left-hand side, the Taylor Rule as

expressed in log-deviations from the BGP is given as

R̂t = Et {Ωθĝc,t+1 − Ωψ (1− θ) ĝx,t+1 + Ωπ̂t+1 (20)

−
(1− γ)

(
1− m

c

)
R
[
1− (1− γ)

(
1− m

c

)] [R̂t+1 − (R− 1)
m
c

1− m
c

ĝm
c
,t+1

]}
where

Ω ≡
R
(
1−

[
(1− γ)

(
1− m

c

)])
+
[
(1− γ)

(
1− m

c

)]
R
(
1−

[
(1− γ)

(
1− m

c

)])
= 1 +

(1− γ)
(
1− m

c

)
R
[
1− (1− γ)

(
1− m

c

)] ≥ 1.

The parameter Ω is important in that for example it determines

whether the "Taylor principle" applies of having a coeffi cient greater

than 1 on the expected inflation rate deviation, as discussed further

below.

Consider some additional related notation that since

ĝt+1 = ln
(
1 + gt+1

)
− ln (1 + g) ≈ gt+1 − g,
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we can express the Taylor Condition in net rates and absolute dif-

ferences from the BGP.

Proposition 1 An equilibrium condition of the economy is in the

form of the Taylor Rule (Orphanides, 2008) that sets deviations

of the short-term nominal interest rate from some baseline path in

proportion to deviations of target variables from their targets:

Rt −R = ΩEt (πt+1 − π) + ΩθEt
(
gc,t+1 − g

)
− Ωψ (1− θ)Etgx,t+1 (21)

−
(1− γ)

(
1− m

c

)
R
[
1− (1− γ)

(
1− m

c

)] [Et (Rt+1 −R
)
− (R− 1)

m
c

1− m
c

Etgm
c
,t+1

]
.

where Ω ≥ 1, and for a given w, then ∂Ω
∂R

< 0 and ∂Ω
∂AF

> 0, and the

target values are equal to the balanced growth path (BGP) equilibrium

values.2

Proof. Since the BGP solution for normalized money demand is

0 ≤ m

c
= 1− AF

(
(R− 1) γAF

w

) γ
1−γ

≤ 1,

then Ω ≡ 1+
(1−γ)(1−m

c )
R[1−(1−γ)(1−m

c )]
> 1 and, given w, ∂Ω

∂R
< 0 and ∂Ω

∂AF
> 0.

For a linear production function of goods, w is the constant mar-

ginal product of labor, but more generally w is endogenous and will

change; however this change in w quantitatively is small compara-

tively to changes in R and AF , so that the derivatives above almost

always hold true.

The fact that Ω > 1 establishes the Taylor principle in theory of

responding by more that one for one to changes in expected infla-

tion rate departures from the "target", which here is the stationary

balanced growth path equilibrium value. Second, this coeffi cient Ω

2This is the the Brookings project form of the Taylor rule as described in Orphanides
(2008).
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depends not only on the stationary nominal interest rate itself, but

also on the productivity in the credity sector that allows inflation

tax avoidance and that at the same time helps determine the money

velocity. A lower R calls for a more aggressive response to increases

in expected inflation above their target than does a higher R. And

a higher productivity of financial intermediation production of ex-

change credit services causes a higher velocity and calls for a more

aggressive response to expected inflation that is above its target.

The second two terms concerning Et
(
gc,t+1 − g

)
and Etgx,t+1 are

for the growth in consumption as compared to the BGP target and

the growth in leisure, respectively; the latter employment growth is

zero along the BGP. These two terms are the counterpart of the typ-

ical output gap. The last composite terms concerns what is typically

known as interest smoothing components, involving forward looking

behaviour for the nominal interest rate. These last two terms can be

expressed perhaps more simply by denoting the consumption veloc-

ity of money as Vt ≡ ct
mt

; if we also define "productive employment

rate" as l ≡ 1 − x, such that x̂t = −1−x
x
l̂t, we can write the Taylor

rule contained within the model as an equilibrium condition that has

ready comparison to the literature.and writing the taylor condition

as

Rt −R = ΩEt (πt+1 − π) + ΩθEt
(
gc,t+1 − g

)
+ Ωψ (1− θ) l

1− lEtgl,t+1

− (Ω− 1)Et
(
Rt+1 −R

)
− ΩVEtgV,t+1, (22)

again noting that ’bar’variables are net rates, and where

ΩV ≡
(R− 1)

R

(
1− γ − (1− γ)

(
1− m

c

)
1− (1− γ)

(
1− m

c

) )
=

(R− 1)

R

(
γm
c

γ + (1− γ) m
c

)
.

Proposition 2 For the Taylor condition of equation (22), it is al-
ways true that 0 ≤ ΩV ≤ 1 ≤ Ω.
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Proof.

Ω ≡
R
(
1− (1− γ)

(
1− m

c

))
+ (1− γ)

(
1− m

c

)
R
(
1− (1− γ)

(
1− m

c

)) = 1 +
(1− γ)

(
1− m

c

)
R
(
1− (1− γ)

(
1− m

c

)) ,
Ω = 1 +

(
ω

R (1− ω)

)
≥ 1;

0 ≤ ω ≡ (1− γ)
(

1− m

c

)
= (1− γ)

[
γγ (R− 1)γ w−γAF

] 1
1−γ ,

m

c
= 1− A

1
1−γ
F

[
(R− 1) γ

w

] γ
1−γ

≤ 1,

1 ≥ 1− γ ≥ ω ≥ 0.

γ + ω = γ + (1− γ)
(

1− m

c

)
= 1− m

c
(1− γ) ≤ 1.

⇒ ΩV ≡
(R− 1)

R

(
1− γ − ω

1− ω

)
≤ 1.

⇒ 0 ≤ ΩV ≤ 1 ≤ Ω.

Note that at the Friedman (1969) optimum of R = 0, then m
c

= 1,

ω = 0, and the velocity coeffi cient is ΩV = 0. The velocity term only

matters when the nominal interest rate and inflation are away from

the optimum and fluctuating. In turn, this has implications for

Ω = 1 +
(

ω
R(1−ω)

)
, since when R = 0, then Ω = 1, as in the Fisher

equation of interest rates. Only as m
c
falls below one, and velocity

rises above one, does the "Taylor principle" of Ω > 1 come into play,

which of course is true for most practical experience.

Corollary 3 Given w, then ∂Ω
∂R
≥ 0, ∂ΩV

∂R
≥ 0, ∂Ω

∂AF
≥ 0, ∂ΩV

∂AF
≤ 0.

Proof. This comes directly from the definitions of parameters as

given above.

A higher target R can be accomplished only by a higher BGP

money supply growth rate. This would in turn make the inflation

coeffi cient Ω higher and so also the consumption growth coeffi cient.

For the "smoothing" terms, the forwards interest rate and velocity
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coeffi cients would be more negative. A higher credit productivity

factor AF , and so a higher velocity, causes a higher inflation coeffi -

cient, and a more negative response to the forward-looking interest

term but a less negative coeffi cient on the velocity growth term.

3.1 Taylor Condition with Output Growth

It is not surprising to be targeting the growth of consumption rather

than the growth in output as the latter one is more relevant to

household welfare maximizers. However, the Taylor condition can be

rewritten in output growth terms so as to be more comparable with

standard Taylor rule specifications (in particular the speed limit

versions of the output gap). For this, use the facts that

yt = ct + it,

ŷt =
c

y
ĉt +

i

y
ît,

and interpret ît using the fact that

ît =
k

i

[
k̂t − (1− δ) k̂t−1

]
,

so that the growth rate of investment can be understood as the

acceleration of the growth of capital gross of depreciation. Then the

rewritten Taylor condition is

Rt −R = Ωθ

[
y

c
Et
(
gy,t+1 − g

)
− i

c
Et
(
gi,t+1 − g

)]
+ Ωψ (1− θ) l

1− lEtgl,t+1

+ΩEt (πt+1 − π)− (Ω− 1)Et
(
Rt+1 −R

)
− ΩVEtgV,t+1. (23)

The term with the investment growth rate in the formula does not

appear in the standard exogenously specified Taylor rules, but here

plays a role as part of what is interpreted as the output gap.
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3.2 Backward Looking Taylor Condition

Mathematically the Taylor condition can also be formulated to have

a "backward looking" interest rate term instead of the "forward

looking" one above. This gives a similar equation that can also be

estimated, by solving in terms of Rt+1 instead of Rt.

Rt+1 −R =
Ω

(Ω− 1)
Et (πt+1 − π) +

Ωθ

(Ω− 1)
Et
(
gc,t+1 − g

)
−

Ωψ (θ − 1) l
1−l

(Ω− 1)
Etgl,t+1(24)

− 1

(Ω− 1)

(
Rt −R

)
− ΩV

(Ω− 1)
EtgV,t.

However the coeffi cients here would be quite different from stan-

dard Taylor estimates. And more importantly this raises the issue

that McCallum (2010) has often discussed. He argues that having a

difference or differential equation in the equilibrium conditions does

not mean that the equation can be interpreted as either forward

looking or backward looking, as the researcher wishes. Rather the

point is that the model implies that either one way or the other is

unique, and the forward looking version is the long accepted rational

expectations version. For example Lucas (1980, AER) suggests that

the forward looking "filters" suit models of an optimizing consumer.

3.3 Credit Interpretation of the Taylor Condition

Christiano, Ilut, Motto and Rostagno (2011) have considered how

the growth rate of credit might be a part of a Taylor rule:

"Inflation is low during stock market booms, so that an

interest rate rule that is too narrowly focused on inflation

destabilizes asset markets and the broader economy. Ad-

justments to the interest rate rule can remove this source

of welfare-reducing instability. For example, allowing an
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independent role for credit growth (beyond its role in con-

structing the inflation forecast) would reduce the volatility

of output and asset prices."

The term on the growth of velocity can also be interpreted as a

growth of credit in the following way:

Vt =
1

1−
(

1− mt
ct

) =
1
mt
ct

,

V V̂t =
(

1− m

c

) ̂(
1− mt

ct

)
so that

gV,t =
m

c

(
1− m

c

)
g(1−m

c ),t

where g(1−m
c ),t is the growth rate of credit (per real money). The

modified Taylor condition in the linear deviation form (with con-

sumption growth) is

Rt −R = ΩθEt
(
gc,t+1 − g

)
+ Ωψ (1− θ) l

1− lEtgl,t+1 + ΩEt (πt+1 − π)

−ΩREt
(
Rt+1 −R

)
− Ω(1−m

c )Etg(1−m
c ),t+1. (25)

Corollary 4 The Taylor condition in equation (25) is character-
ized by Ω(1−m

c ) ≡
(R−1)(1−γ−ω)2

(1−γ)2
ω

R(1−ω)
; given w, then

∂Ω(1−mc )
∂R

> 0,
∂Ω(1−mc )

∂γ
> 0.

A positive expected credit growth causes a negative effect on the

current net nominal interest rate Rt, which rises in magnitude as

the BGP R rises and as the credit technology parameter γ rises.

4 Calibration

Here we follow Benk et al. (2010) in using postwar US data for the

calibration:
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Preferences
θ 1 Relative risk aversion parameter
ψ 1.84 Leisure weight
β 0.96 Discount factor

Goods Production
α 0.64 Labor share in goods production
δK 0.031 Depreciation rate of goods sector
AG 1 Goods productivity parameter

Human Capital Production
ε 0.83 Labor share in human capital production
δH 0.025 Depreciation rate of human capital sector
AH 0.21 Human capital productivity parameter

Banking Sector
γ 0.11 Labor share in credit production
AF 1.1 Banking productivity parameter

Government
σ 0.05 Money growth rate

Table 1: Parameters

g 0.024 Avg. annual output growth rate
π 0.026 Avg. annual inflation rate
R 0.0944 Nominal interest rate
lG 0.248 Labor used in goods sector
lH 0.20 Labor used in human capital sector
lF 0.0018 Labor used in banking sector
i/y 0.238 Investment-output ratio in goods sector
m/c 0.38 Share of money transactions
x 0.55 Leisure time
l ≡ 1− x 0.45 Productive time

Table 2: Target Values
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For the calibration, we can now derive values of the coeffi cients

expected in the estimation of the primary Taylor equation that will

be used for estimation, that of equation (22):

Rt −R = ΩEt (πt+1 − π) + ΩθEt
(
gc,t+1 − g

)
+ Ωψ (1− θ) l

1− lEtgl,t+1

− (Ω− 1)Et
(
Rt+1 −R

)
− ΩVEtgV,t+1.

For the inflation coeffi cient Ω, the calibrated value is

Ω = 1 +
ω

R (1− ω)
= 1 +

(1− γ)
(
1− m

c

)
R
[
1− (1− γ)

(
1− m

c

)]
= 1 +

(1− 0.11) (1− 0.38)

1.0944 (1− (1− 0.11) (1− 0.38))
= 2.125.

And for R = 1.0, only cash is used, so that m
c

= 1, and this coef-

ficient goes to one; Ω = 1. This similarly happens with zero credit

productivity when AF = 0 and only cash is used in exchange.

The other coeffi cients except for velocity are simple functions of

the inflation coeffi cient. The consumption growth coeffi cient is Ωθ

which with θ = 1 for log-utility, this coeffi cient is zero. With leisure

preference at 1.84, and the productive time 1− x ≡ l given at 0.55,

the coeffi cient on the growth in productive time is

Ωψ (1− θ) l

1− l = (2.125) (1.84) (1− 1)
0.55

0.45
= 0.

Of course this still equals zero because of log utility, but any un-

derestimation in the model of θ can then be seen to be factored

by (2.125) (1.84) 0.55
0.45

= 4.78. The coeffi cient on the forward interest

term is 1.125 given the inflation coeffi cient of 2.125, and the velocity
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coeffi cient ΩV is

ΩV ≡ (R− 1)

R

(
1− γ − ω

1− ω

)
=

(R− 1)

R

(
1− γ − (1− γ)

(
1− m

c

)[
1− (1− γ)

(
1− m

c

)] ) =
(R− 1)

R

(
(1− γ) m

c[
1− (1− γ)

(
1− m

c

)])

=
(1.0944− 1)

1.0944

(
(1− 0.11) 0.38

(1− (1− 0.11) (1− 0.38))

)
= 0.065088.

5 Artificial Data Estimation Results

The model is simulated to generate all of the variables of the econ-

omy, for a data sample of 100 years, with each period one year.

Then the model is estimated over this 100 year annual simulated set

of time series variables, for which the expected next period variables

are computed exactly within the model. This simulation of 100 data

points for all variables and the estimation of the Taylor condition

is repeated 1000 times, and then the average of the 1000 estimation

equation coeffi cients are presented. In particular, we draw 100 ran-

dom sequences for the shock vector innovations and then use control

functions of the log-linearized model to compute 100 sequences for

the variables, including the one-period ahead forecasts, entering the

Taylor condition. The BGP equilibrium values are used for the tar-

get values of the Taylor condition. Then we apply an OLS estimation

to each model simulation, as in Orphanides AER (2001), while in

addition using instrumental variable (IV) estimation to account for

possible simultaneity, with both sets of results presented.

We report these results for for sets of data: 1) raw data, 2) HP

filtered data, 3) a Christiano and Fitzgerald (2003) band pass filter

that uses a 3 by 8 window for business cycles, and 4) a Christiano

and Fitzgerald (2003) band pass filter with a 2 by 15 window that
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leaves in some of the longer run effects that shocks can have in

an endogenous growth economy. For experimentation, a 2 by 100

Christiano and Fitzgerald (2003) band pass filter in effects takes out

the mean and was found to give almost the same results as the raw

data, which is stationary (results not reported).

Most Taylor rule estimations would use data filtered in ways sim-

ilar to the second and third filters, and so these might provide the

best analogue for a typical Taylor rule estimation. However we con-

sider the 2 by 15 band pass results to be the "best" results as they

also include the long run effects from changes in endogenous growth

that happen over considerable periods for the shock persistence as-

sumed here, and as is usual. In this model, the endogenous growth

leads to effects over frequencies lower than the business cycle, ac-

cording to findings in our previous related work (Benk et al, 2010).

The shocks can cause the growth rate and the permanent income

levels to shift over considerable periods of time.

The results are reported in turn for three different models: one as

in equation (22), a second model in which the consumption growth

rate is arbitrarily replaced by the output growth rate, and third an

equation with only the standard Taylor rule of the inflation term,

the output growth term and the interest smoothing term. But it

is important to emphasize that for all three models we use the ar-

tifiicially simulated data from the full model, albeit using the four

different filters. Therefore only the first model is correctly specified

in accordance with the data. The other two models are counterfac-

tual experiments designed to show the results with certain model

misspecification.

Note that for each of the three models estimated from the simu-

lated data, we also arbitrarily eliminate the forward looking interest

term as an alternative in each estimation.

The main equation for estimation it that derived from equation
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(22); it can be written as

Rt = β0+β1Etπt+1+β2Etgc,t+1+β3Etgl,t+1+β4EtgV,t+1+β5EtRt+1+εt.

For the instrument variables estimation, the following are used as

instruments:

Rt−1, Rt−2, Rt−3, Rt−4;

πt−1, gc,t−1,gl,t−1, gv ,t−1.

Results are presented in 12 tables, four for each of the three

estimated equations, using each of the four data filters. Tables 3, 4,

5 and 6 present the results for the raw, HP filtered, 3x8 band-pass

filtered data, and the 2x15 band-pass filtered data respectively for

the main Taylor condition of the model (equation (22)), as given

in the estimation form of the equation above. Generally the results

move more towards the theoretical model as the reader procedes

from the first to the fourth of the four tables of results.

In particular, in Table 6 all coeffi cients are in a sense as predicted

by the theory except for one main issues. First, all variables are sta-

tistically significant for the full model; this feature is lost when the

forward interest term is arbitrarily dropped. Second, the inflation

coeffi cient is 2.1759 with OLS and 2.248 with IVs as compared to

the theoretical value of 2.125, so this is clearly a good fit.

However the consumption growth term and productive time growth

terms both have coeffi cients as if the relative risk aversion coeffi cient

is less than one, rather than equaling one as in log-utility. Consider

that for the consumption term the theoretical value is Ωθ. With

Ω = 2.248, then with an IV coeffi cient in column two of 0.3171, this

simplies for the IV estimation that Ωθ = (2.248) θ = 0.3171, so that

θ = 2.248
0.3171

= 7.089 which is too high.

However from the growth in productive time term, the IV esti-

mate is−0.3764. Theoretically, this term is given byΩψ (1− θ) l
1−l =
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(2.248) (1.84) (1− θ) 0.55
0.45

= 0.3764, implying that

0.3764 = (2.248) (1.84) (1− θ) 0.55

0.45
,

θ = 1− 0.3764

(2.248) (1.84) 0.55
0.45

= 0.9256.

A coeffi cient of θ = 0.9256 is quite close to the calibration of θ = 1.

For velocity, the theoretical coeffi cient is −0.06508, as compared

to the Table 6 statistically significant value of −0.1956 for OLS

and −0.3125 for IVs, in the first two columns, which are higher.

Finally, consider the forward looking interest rate coeffi cient in Table

6. These values in the first two columns are −1.758 and −1.592,

and compare to the theoretical value of the negative of the inflation

coeffi cient minus one. As estimated with IVs, this value is−1.248, so

again these estimated values seem to be pretty much in the ballpark.

The upward bias in the consumption growth term may be an

econometric feature that arises due to the estimation procedure that

we have not identified, although the instrument sets for IV estima-

tions do pass the Sargan test. On the other hand, the estimation

results of Table 6 are very much what a researcher estimating a Tay-

lor rule might call a successful estimation of the Taylor rule. And

this is true even if it was estimated without any theoretical model

to guide judgement of the results! Such Taylor rule estimations can

be found in various forms throughout the literature.

The "Taylor principle" of the inflation coeffi cient exceeding one is

robust, and robust in an interesting way. In Table 3, with raw data,

the inflation coeffi cient is significant and less than one in all four

cases. In Table 4, with HP data, the inflation coeffi cient now rises

significantly above one for the model including the forward interest

rate term, but below or bordering on one for the third and fourth
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columns without the forward interest term. Further the HP data

finds the inflation coeffi cient between 1.5 and 1.7 when including

the forward interest term, well below the theoretical value of 2.125.

Once the 3x8 band pass filter is used in Table 5, the values are

2.175, 2.770 when including the forward interest term, but 0.634

and 2.4146 without the forward term. This variation settles down

in the 2x15 Table 6 results, with coeffi cients near the theoretical

value when including the forward interest term, but at 0.6136 and

0.9587 without the forward term. In other words, getting inflation

coeffi cients less than one may be a result of model misspecification

as is clear here.

The other interesting point of the Taylor principle is that here

it results only when velocity is greater than one. Then the theory

predicts a coeffi cient greater than one. This takes away the aura of

mystery involved with a central bank that is acting by aggressive

action to offset inflation increases by raising the interest rate by

more than the inflation increase. Rather, it is a simple consequent

of setting the money supply growth rate.

The next estimation equation and two tables with results takes

a counter-factual view of our model. Instead of using the growth in

consumption term we incorrectly substitute in a growth in output

term, and do an otherwise similar set of estimations. The estimation

equation is

Rt = β0+β1Etπt+1+β2Etyg,t+1+β3Etlg,t+1+β4Etvg,t+1+β5EtRt+1+εt,

and the instruments now are
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Raw data Assumed β5 = 0
OLS IV OLS IV

β0 8.15E-06 3.19E-06 -2.33E-06 4.43E-06
(0.0004) [0.0186] (0.0004) [0.0081] (0.0003) [-0.0069] (0.0004) [0.0121]

Etπt+1 0.8367∗ 0.6051 0.7017∗ 0.8076∗

(0.2623) [3.1892] (0.4755) [1.4563] (0.0692) [10.1454] (0.1113) [7.2544]
Etgc,t+1 0.177∗ 0.2021∗ 0.1636∗ 0.2516∗

(0.0282) [6.2724] (0.1024) [1.9741] (0.0154) [10.6043] (0.0523) [4.8054]
Etgl,t+1 -0.0311 0.0848 -0.0174 0.0969

(0.0818) [-0.3799] (0.1437) [0.59] (0.0738) [-0.2363] (0.1335) [0.7257]
EtgV,t+1 -0.1693∗ -0.2154∗ -0.1671∗ -0.2584∗

(0.0264) [-6.4048] (0.0952) [-2.2628] (0.0248) [-6.7515] (0.0558) [-4.6312]
EtRt+1 -0.1698 0.3402 N/A N/A

(0.3076) [-0.5521] (0.6309) [0.5392]
R-square 0.7859 0.527 0.7755 0.6094
Adjust R-sqaure 0.7742 0.5004 0.7660 0.5921
F statistic 75.5656∗ 47.1891∗ 89.308∗ 67.1322∗

Sargan’s statistic N/A 2.4628∗ {3} N/A 4.361∗ {4}
Notes: () is standard error; [] is t-statistic; * represents significant at 95% confidence interval; {} degree of freedom

Table 3: Taylor Condition Estimation, Raw Data, 100 Years Simulated, 1000
Estimations Average

HP data Assumed β5 = 0
OLS IV OLS IV

β0 -3.89E-06 -1.78E-06 -3.28E-06 -1.38E-06
(6.49E-05) [-0.06] (3.92E-05) [-0.0454] (4.95E-05) [-0.0663] (3.51E-05) [-0.0393]

Etπt+1 1.6811∗ 1.5211∗ 0.7159∗ 1.0028∗

(0.2345) [7.1673] (0.5902) [2.5773] (0.0667) [10.7357] (0.1639) [6.1183]
Etgc,t+1 0.243∗ 0.2754∗ 0.159∗ 0.2261∗

(0.0215) [11.3137] (0.0742) [3.71] (0.0152) [10.4481] (0.0516) [4.3809]
Etgl,t+1 -0.1894∗ -0.1506 -0.1065 -0.0742

(0.0723) [-2.6193] (0.1426) [-1.056] (0.0702) [-1.518] (0.1144) [-0.6488]
EtgV,t+1 -0.1942∗ -0.2855∗ -0.1718∗ -0.2496∗

(0.0244) [-7.9655] (0.0613) [-4.6556] (0.0242) [-7.0966] (0.0498) [-5.0115]
EtRt+1 -1.1375∗ -0.7118 N/A N/A

(0.2668) [-4.264] (0.7986) [-0.8913]
R-square 0.7999 0.5604 0.7085 0.5227
Adjust R-square 0.7891 0.5357 0.696 0.5015
F statistic 80.2562∗ 51.3676∗ 60.9254∗ 52.2328∗

Sargan’s statistic N/A 3.1274∗ {3} N/A 4.3747∗ {4}
Notes: () is standard error; [] is t-statistic; * represents significant at 95% confidence interval; {} degree of freedom

Table 4: Taylor Condition Estimation, HP Filtered Data, 100 Years Simulated,
1000 Estimations Average
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BP Filter: Assumed β5 = 0
3x8 Window OLS IV OLS IV
β0 -8.09E-08 -4.56E-07 -7.32E-07 -3.06E-06

(1.77E-05) [-0.0456] (1.28E-05) [-0.0356] (1.48E-05) [-0.0496] (4.41E-05) [-0.0694]
Etπt+1 2.1746∗ 2.7704∗ 0.634∗ 2.4156∗

(0.3826) [5.6835] (0.3731) [7.4262] (0.1956) [3.2417] (1.1099) [2.1764]
Etgc,t+1 0.2833∗ 0.3297∗ 0.1549∗ 0.1744∗

(0.0427) [6.642] (0.0369) [8.9336] (0.0288) [5.3773] (0.0737) [2.3655]
Etgl,t+1 -0.238 -0.4413∗ -0.2218 -0.5969

(0.1299) [-1.8325] (0.1205) [-3.6638] (0.1331) [-1.6667] (0.3599) [-1.6584]
EtgV,t+1 -0.1522∗ -0.3042∗ -0.1743∗ -0.6034∗

(0.0428) [-3.5603] (0.0571) [-5.3271] (0.0519) [-3.357] (0.2492) [-2.4212]
EtRt+1 -2.0338∗ -2.2182∗ N/A N/A

(0.4254) [-4.7809] (0.4535) [-4.8913]
R-square 0.7907 0.7368 0.5762 N/A
Adjust R-square 0.7794 0.722 0.5582 N/A
F statistic 86.8317∗ 80.0176∗ 35.4542∗ 18.7186∗

Sargan’s statistic N/A 7.4585∗ {3} N/A 2.0652∗ {1}
Notes: () is standard error; [] is t-statistic; * represents significant at 95% confidence interval; {} degree of freedom

The instruments when β5 = 0 are Rt−1, πt−1, gc,t−1, gl,t−1, gv,t−1

Table 5: Taylor Condition Estimation, Band Pass Filtered Data (8 years), 100
Years Simulated, 1000 Estimations Average

BP Filter Assumed β5 = 0
2x15 Window OLS IV OLS IV
β0 -2.48E-06 -2.06E-06 -1.78E-06 -1.98E-06

(4.35E-05) [-0.057] (3.07E-05) [-0.0672] (3.35E-05) [-0.0532] (3.08E-05) [-0.0642]
Etπt+1 2.1759∗ 2.2484∗ 0.6136∗ 0.9587∗

(0.1945) [11.1867] (0.4885) [4.6022] (0.107) [5.7356] (0.2451) [3.9112]
Etgc,t+1 0.2769∗ 0.3171∗ 0.1701∗ 0.2707∗

(0.016) [17.2929] (0.0347) [9.139] (0.0174) [9.7592] (0.0429) [6.3073]
Etgl,t+1 -0.294∗ -0.3764∗ -0.2103∗ -0.2586∗

(0.0676) [-4.3476] (0.1012) [-3.7192] (0.0882) [-2.3847] (0.1248) [-2.072]
EtgV,t+1 -0.1956∗ -0.3125∗ -0.1583∗ -0.2998∗

(0.0245) [-79976] (0.0378) [-8.2683] (0.0315) [-5.0211] (0.0514) [-5.8295]
EtRt+1 -1.7576∗ -1.5923∗ N/A N/A

(0.1989) [-8.8347] (0.5732) [-2.7779]
R-square 0.8288 0.6648 0.6247 0.3197
Adjust R-square 0.8196 0.646 0.6087 0.2895
F statistic 95.5996∗ 61.6562∗ 41.5342∗ 35.3063∗

Sargan’s statistic N/A 4.897∗ {3} N/A 8.5164∗ {4}
Notes: () is standard error; [] is t-statistic; * represents significant at 95% confidence interval {} degree of freedom

Table 6: Taylor Condition Estimation, Band Pass Filtered Data (15 years), 100
Years Simulated, 1000 Estimations Average
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Rt−1, Rt−2, Rt−3, Rt−4;

πt−1, yg,t−1,lg,t−1, vg,t−1.

Tables 7-10 are directly comparable to the Tables 3-6 above ex-

cept for the arbitrary, counter-theoretical change in one variable,

now including output growth, as in the "speed limit" definition of

the output gap, in place of the consumption growth term. The

results for the inflation coeffi cient are markedly different from the

correct model results in Tables 3-6. The HP results show inflation

coeffi cient above one in several cases, similar to results seen in the

literature. However using the band pass filters the results become

much more erratic, and do not come close to the theoretical value

for the coeffi cient as in Tables 5 and 6. Rather they jump to 3.5 and

19 for the 3x8 band pass results with the forward interest term, and

to 3.9 without the forward term and with IVs, while being below

one for the case without the forward interest term and with OLS.

The 2x15 band pass results are similar with coeffi cients of 4 and

11 with the forward interest term, and of 0.5 and 2.3 without the

forward term.

Interesting the velocity growth term remains signficant, of the

right sign and of a similar magnitude in most of the results. This

implies that excluding this variable may lead to misspecification

such as in almost all Taylor rule estimations found in the literature.

The forward interest term itself becomes insignificant in five of

six of the filtered results. The output growth, growth in productive

time, and velocity terms also have much more variable results across

the estimations. This makes it diffi cult to choose the "best" model

as their is little confidence that one such model is best. Basically

it is surprising how this one deviation from the true model that

generated the artificial data could give such more volatile results.
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Raw data Assumed β5 = 0
OLS IV OLS IV

β0 -4.68E-06 -3.5E-07 -8.21E-07 -2.6E-05
(0.0002) [-0.022] (0.0006) [0.0005] (0.0004) [-0.002] (0.0006) [-0.0427]

Etπt+1 0.2582 0.357 0.7412∗ 1.1486∗

(0.213) [1.2126] (1.0202) [0.3499] (0.0944) [7.8495] (0.1684) [6.8202]
Etgy,t+1 0.0094 0.0672 0.0566∗ 0.2031∗

(0.0244) [0.3853] (0.1998) [0.3366] (0.0155) [3.6516] (0.095) [2.1377]
Etgl,t+1 -0.0881 -0.2823 -0.3366∗ -0.8679∗

(0.1308) [-0.6736] (0.8729) [-0.3234] (0.1041) [-3.2346] (0.3255) [-2.6659]
EtgV,t+1 -0.1447∗ -0.0587 -0.1329∗ -0.0978

(0.0252) [-5.7478] (0.0936) [-0.6275] (0.0282) [-4.7107] (0.0717) [-1.3646]
EtRt+1 0.5832∗ 0.995 N/A N/A

(0.2586) [2.2552] (1.2053) [0.8255]
R-square 0.6224 N/A 0.5852 N/A
Adjust R-square 0.6021 N/A 0.5676 N/A
F statistic 34.3579∗ 18.2004∗ 37.1515∗ 23.976∗

Sargan statistic N/A 2.5382∗ {3} N/A 5.2205∗ {4}
Notes: () is standard error; [] is t-statistic; * represents significant at 95% confidence interval {} degree of freedom

Table 7: Output Growth instead of Consumption Growth, Raw Data, 100 Years
Simulated, 1000 Estimations Average

It illustrates that if our model was the true model of the economy,

and this second estimation model was used, then the results would

become much more diffi cult to have confidence in. The results here

echo back to the lack of robustness that has been found for example

for interest smoothing terms, and for whether the Taylor principle

holds or not in different periods. It should hold in ALL periods,

once other factors are included within the model.

Finally consider a way to take one step further using the same

simulated data from the general equilibrium economy, while now es-

timating a bog-standard Taylor rule equation. The estimated equa-

tion for such a model is given here as

Rt = α + β1πt + β2gy,t + β3EtRt+1 + εt,
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HP data Assumed β5 = 0
OLS IV OLS IV

β0 -3.17E-06 -4.31E-06 -2.37E-06 -8.84E-07
(4.12E-05) [-0.077] (7.36E-05) [-0.0586] (3.6E-05) [-0.0659] (5.47E-05) [-0.0161]

Etπt+1 1.0886∗ 2.1411∗ 0.7243∗ 1.4884∗

(0.5873) [1.8537] (2.849) [0.7515] (0.1017) [7.1206] (0.2455) [6.0625]
Etgy,t+1 0.0736 0.2234 0.0458∗ 0.1545

(0.0474) [1.5539] (0.3396) [0.6579] (0.0147) [3.1214] (0.1166) [1.3247]
Etgl,t+1 -0.5084 -1.3189 -0.3266∗ -0.9081

(0.3119) [-1.6299] (1.8816) [-0.7009] (0.1106) [-2.9534] (0.5026) [-1.807]
EtgV,t+1 -0.1308∗ -0.1413 -0.1318∗ -0.1273

(0.0314) [-4.1656] (0.1071) [-1.3197] (0.0305) [-4.3232] (0.0696) [-1.8279]
EtRt+1 -0.4029 -0.7159 N/A N/A

(0.6526) [-0.6174] (3.189) [-0.2245]
R-square 0.4556 N/A 0.4461 N/A
Adjust R-square 0.4264 N/A 0.4225 N/A
F statistic 16.9992∗ 10.5689∗ 20.7177∗ 15.5229∗

Sargan statistic N/A 3.7252∗ {3} N/A 5.5669∗ {4}
Notes: () is standard error; [] is t-statistic; * represents significant at 95% confidence interval; {} degree of freedom

Table 8: Output Growth instead of Consumption Growth, HP Filtered, 100
Years Simulated, 1000 Estimations Average

with instruments of :

Rt−1, Rt−2, Rt−3, Rt−4;

πt−1, gy,t−1.

Tables 11-14 show first that the inflation coeffi cient is above one,

in a reasonable range, and statistically significant for only the IV

estimation for the HP filters, when the forward interest rate term

is dropped. For the 2x15 filter the IV coeffi cient again becomes too

high. For all other filtered cases, the inflation coeffi cient is only

significant in the OLS estimation without the forward interest term,

but with coeffi cients between 0.25 and 0.5. Thus the Taylor principle

fails in all but one of the 12 filtered estimation results.

Similarly the output growth term becomes insignificant in all but

one of the filtered estimation results. For the HP filter, with OLS

29



BP Filter Assumed β5 = 0
3x8 Window OLS IV OLS IV
β0 -1.34E-06 -3.59E-06 -6.38E-07 -7.97E-06

(1.88E-05) [-0.0711] (0.0001) [-0.0308] (1.28E-05) [-0.0499] (8.21E-05) [-0.0971]
Etπt+1 3.4709∗ 19.4083 0.7351∗ 3.8595

(3.2984) [1.0523] (10.3917) [1.8677] (0.2582) [2.8464] (1.9897) [1.9397]
Etgy,t+1 0.2325 1.4064 0.0357 0.1509

(0.2426) [0.9582] (0.8027) [1.7521] (0.0261) [1.3675] (0.1067) [1.414]
Etgl,t+1 -1.6512 -9.9752 -0.306 -1.7217

(1.7057) [-0.9681] (5.5867) [-1.7855] (0.2591) [-1.1809] (1.1505) [-1.4965]
EtgV,t+1 -0.1465∗ -0.406∗ -0.1464∗ -0.8419

(0.0679) [-2.1566] (0.1724) [-2.3555] (0.0659) [-2.2231] (0.465) [-1.8106]
EtRt+1 -2.974 -19.3281 N/A N/A

(3.5332) [-0.8417] (11.4718) [-1.6848]
R-square 0.3407 N/A 0.2631 N/A
Adjust R-square 0.3053 N/A 0.2318 N/A
F statistic 11.234∗ 10.9357∗ 9.3531∗ 7.4618∗

Sargan statistic N/A 5.4738∗ {2} N/A 2.8875 {1}
Notes: () is standard error; [] is t-statistic; * represents significant at 95% confidence interval; {} degree of freedom

The instruments when β5 = 0 are Rt−1, πt−1, gy,t−1, gl,t−1, gv,t−1
The instruments when β5 6= 0 are Rt−1, Rt−2, Rt−3, πt−1, gy,t−1, gl,t−1, gv,t−1

Table 9: Output Growth instead of Consumption Growth, Band Pass Filtered
data (3x8 years), 100 Years Simulated, 1000 Estimations Average
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BP Filter Assumed β5 = 0
2x15 Window OLS IV OLS IV
β0 -3.69E-06 -7.87E-06 -8.79E-07 -4.94E-06

(6.46E-05) [-0.0571] (0.0001) [-0.0631] (2.49E-05) [-0.0353] (9.61E-05) [-0.0514]
Etπt+1 4.1282∗ 10.8617∗ 0.5416∗ 2.3462∗

(1.6764) [2.4625] (5.2505) [2.0687] (0.1696) [3.1927] (1.1765) [1.9943]
Etgy,t+1 0.2958∗ 0.9448 0.0384∗ 0.2096

(0.1223) [2.418] (0.4948) [1.9093] (0.0196) [1.9632] (0.3167) [0.6616]
Etgl,t+1 -2.0516∗ -6.3939 -0.2833 -1.4587

(0.8772) [-2.3388] (3.3234) [-1.9239] (0.1894) [-1.4958] (1.7819) [-0.8187]
EtgV,t+1 -0.1175∗ -0.3193∗ -0.0952∗ -0.2468

(0.0422) [-2.7816] (0.1471) [-2.1711] (0.0428) [-2.2249] (0.1643) [-1.502]
EtRt+1 -3.7842∗ -10.2081 N/A N/A

(1.7718) [-2.1358] (5.7383) [-1.7789]
R-square 0.3583 N/A 0.2459 N/A
Adjust R-square 0.3238 N/A 0.2138 N/A
F statistic 11.3053∗ 7.4463∗ 8.389∗ 6.084∗

Sargan statistic N/A 6.9086∗ {3} N/A 3.6385∗ {1}
Notes: () is standard error; [] is t-statistic; * represents significant at 95% confidence interval; {} degree of freedom

The instruments when β5 = 0 are Rt−1, πt−1, gy,t−1, gl,t−1, gv,t−1

Table 10: Output Growth instead of Consumption Growth, Band Pass Filtered
data (2x15 years), 100 Years Simulated, 1000 Estimations Average

and without the forward interest term, the output growth term is

significant, of the right sign, but close to zero at 0.028. The last

variable, the forward interest term, is insignificant in all 6 filtered

estimation cases.

The results of Tables 11-14 show a breaking down of the Taylor

principle, a lack of interest smoothing, and little or no effect of the

output growth deviations. Such results in the literature have been

simply interpreted as implying that the central bank was strong on

inflation, with little feedback from output deviation, and that there

was no interest smoothing during the estimation period. And maybe

the one result with the Taylor principle holding would be presented,

or maybe the other results would also be presented. It might be

concluded, again simply, that the Taylor principle was not holding,

or it was, while the central bank was had a strong inflation focus,
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Raw data Assumed β3 = 0
OLS IV OLS IV

β0 -8.43E-06 1.02E-06 -6.38E-06 -1.81E-06
(0.0002) [-0.035] (0.0005) [0.002] (0.0004) [-0.0165] (0.0009) [-0.0021]

πt 0.1405 0.0468 0.579∗ 0.9708∗

(0.1822) [0.771] (0.4676) [0.0979] (0.0842) [6.8801] (0.2983) [3.2546]
gy,t 0.0154 0.0069 0.0384∗ 0.032

(0.0147) [1.048] (0.1185) [0.0582] (0.0129) [2.9691] (0.3055) [0.1046]
EtRt+1 0.5438∗ 1.301∗ N/A N/A

(0.2132) [2.5505] (0.5954) [2.185]
R-square 0.5084 N/A 0.4676 N/A
Adjust R-square 0.5235 N/A 0.4565 N/A
F statistic 37.8863∗ 25.3571∗ 46.2738∗ 28.9338∗

Sargan statistic N/A 2.6444∗ {3} N/A 5.8272∗ {2}
Notes: () is standard error; [] is t-statistic; * represents significant at 95% confidence interval; {} degree of freedom

The instruments when β3 = 0 are Rt−1, Rt−2, πt−1, gy,t−1

Table 11: Output Growth in Standard Taylor Rule, Raw Data, 100 Years Sim-
ulated, 1000 Estimations Average

although maybe not an "aggressive" one as in the Taylor principle.

Of course all such interpretations of the results would be spurrious

as they result simply from model misspecification.

6 Taylor Condition under Special Cases

Below we show how the form of the GE Taylor rules changes when

the modelling setup changes. First we explore how the Taylor prin-

ciple is lost in a cash only economy, when the only change is to

exclude the exchange credit as an alternative to cash. Second, in an

economy without physical capital, the output growth term replaces

the consumption growth term, in that theoretical the two are the

same. If we also make exchange credit prohibitive and eliminate

leisure preference, then the traditional Taylor (1993) rule with the

additional restriction that the coeffi cient on inflation is one. Finally

the exogenous growth version of the model is presented, whereby
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HP data Assumed β3 = 0
OLS IV OLS IV

β0 -1.74E-06 1.61E-07 -1.64E-06 2.05E-06
(2.48E-05) [-0.0701] (6.18E-05) [0.026] (2.47E-05) [-0.0662] (6.11E-05) [0.0336]

πt 0.2089 0.1679 0.4913∗ 1.2463∗

(0.2836) [0.7366] (1.0468) [0.1604] (0.0845) [5.8126] (0.4415) [2.8232]
gy,t 0.0172 0.0155 0.0281∗ 0.0155

(0.0152) [1.1307] (0.1305) [0.1189] (0.012) [2.3509] (0.2085) [0.0743]
EtRt+1 0.3201 1.3556 N/A N/A

(0.3084) [1.0381] (1.11) [1.2213]
R-square 0.3354 N/A 0.3148 N/A
Adjust R-square 0.3144 N/A 0.3005 N/A
F statistic 16.9139∗ 12.3363∗ 23.4052∗ 20.2213∗

Sargan statistic N/A 4.5173∗ {3} N/A 7.6602∗ {3}
Notes: () is standard error; [] is t-statistic; * represents significant at 95% confidence interval; {} degree of freedom

The instruments when β3 = 0 are Rt−1, Rt−2, Rt−3, πt−1, gy,t−1

Table 12: Output Growth in Standard Taylor Rule, HP Filtered Data, 100 Years
Simulated, 1000 Estimations Average

BP Filter Assumed β3 = 0
3x8 Window OLS IV OLS IV
β0 -4.75E-07 -2.12E-05 -4.06E-07 -5.65E-06

(1.33E-05) [-0.0358] (0.0003) [-0.061] (1.33E-05) [-0.0306] (0.0001) [-0.0512]
πt 0.315 2.2666 0.2541∗ 1.1365

(0.5936) [0.5308] (9.395) [0.2413] (0.0832) [3.0558] (3.4309) [0.3313]
gy,t 0.0184 0.5236 0.0173 0.3275

(0.0246) [0.7474] (2.3498) [0.2228] (0.0176) [0.9837] (0.3067) [1.068]
EtRt+1 -0.0737 -2.9147 N/A N/A

(0.6201) [-0.1189] (11.221) [-0.2598]
R-square 0.1349 N/A 0.1117 N/A
Adjust R-square 0.1076 N/A 0.0932 N/A
F statistic 5.2231∗ 3.0513∗ 6.3547∗ 7.1777∗

Notes: () is standard error; [] is t-statistic; * represents significant at 95% confidence interval; {} degree of freedom

The instruments when β3 = 0 are πt−1, gy,t−1
The instruments when β3 6= 0 are Rt−1, πt−1, gy,t−1

Table 13: Output Growth in Standard Taylor Rule, Band Pass filter Data (8
years), 100 Years Simulated, 1000 Estimations Average
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BP Filter Assumed β3 = 0
2x15 Window OLS IV OLS IV
β0 -6.03E-07 -8.11E-05 -5.32E-07 -0.0003

(2.6E-05) [-0.0232] (0.0078) [-0.0104] (2.59E-05) [-0.0206] (0.0119) [-0.0244]
πt 0.3114 12.9747 0.3265∗ 10.336

(0.4455) [0.6989] (480.1135) [0.027] (0.0993) [3.2887] (246.9293) [0.0419]
gy,t 0.0198 -0.6661 0.0207 -1.056

(0.0173) [1.1461] (33.8783) [-0.0197] (0.012) [1.7299] (32.9489) [-0.0321]
EtRt+1 0.0071 -5.7142 N/A N/A

(0.4727) [0.015] (387.8748) [-0.0147]
R-square 0.1684 N/A 0.1533 N/A
Adjust R square 0.1422 N/A 0.1356 N/A
F statistic 6.7896∗ 1.3647 9.2247∗ 2.6632
Notes: () is standard error; [] is t-statistic; * represents significant at 95% confidence interval; {} degree of freedom

The instruments when β3 = 0 are πt−1, gy,t−1
The instruments when β3 6= 0 are Rt−1, πt−1, gy,t−1

Table 14: Output Growth in Standard Taylor Rule, Band Pass filter Data (15
years), 100 Years Simulated, 1000 Estimations Average

only investment in human capital is eliminated. The difference in

the derived Taylor condition is that the targets are now strictly

exogenous as well. In contrast these are the BGP solutions with

endogenous growth.

Note that for all of these special cases of our economy, we could

run the same experiment of generating artificial data and then es-

timating the Taylor condition to show that these estimations reveal

only how the central bank is conducting its money supply policy.

Again it would be true that these are not the result of some type

of aggressive or passive reaction to inflation in terms of setting the

interest rate. But in truth, each is still equivalent to the other,

and either interpretation is reasonable. The point remains to de-

rive the precise form of the Taylor condition within the best general

equilibrium structure that we can, so that when we estimate such

conditions from the actual economy, we can understand our results

and where such misspecification bias might lay. This is a huge murky

grey area at present, which motivates looking at these other cases
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of the model.

6.1 GE Taylor for CIA Endogeneous Growth Economy

One special case of the economy is when there is no banking, no

credit production and a cash-only economy occurs. This holds if

AF = 0, with the result of the endogenous growth model with a

CIA constraint as in Gomme (1993) or relatedly Jones, Manuelli,

and Siu (2007). In this case, the Taylor condition can be expressed

as

Rt −R = θEt
(
gc,t+1 − g

)
+ ψ (1− θ)Etgl,t+1 + Et (πt+1 − π) .

The most striking differences here are that the Taylor condition does

not contain the interest-rate-smoothing terms and the Taylor prin-

ciple is only marginally met in that now Ω = 1, rather than Ω > 1.

Therefore the endogenization of velocity through credit production

is key to establishing in theory the Taylor principle and forward-

looking interest-smoothing terms.

6.2 GE Taylor with No Physical Capital

Keeping in endogenous velocity, with AF > 0, but having an econ-

omy without physical capital give the special case of a human capital

only economy, as in the framework of Gillman and Kejak (2005) or

relatedly Hromcova (2008). Now the growth of consumption coin-

cides with the growth of output, but there are still employment and

and interest smoothing terms, along with the Taylor principle being

satisfied.

Rt −R = ΩθEt
(
gy,t+1 − g

)
+ Ωψ (1− θ) l

1− lEtgl,t+1 + ΩEt (πt+1 − π)

−ΩREt
(
Rt+1 −R

)
− ΩVEtgV,t+1.
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However if further, there is no leisure choice, in that ψ = 0, or

alternatively if there is log-utility (θ = 1), then the Taylor condition

no longer includes the term for the expected growth in productive

time :

Rt −R = ΩθEt
(
gy,t+1 − g

)
+ ΩEt (πt+1 − π)

−ΩREt
(
Rt+1 −R

)
− ΩVEtgV,t+1.

And if there is no banking, in that AF = 0, then GE Taylor Rule

collapses to the commonly used Taylor rule without interest rate

smoothing as in Taylor (1993), except for a marginal Taylor principle

of Ω = 1 :

Rt −R = θEt
(
gy,t+1 − g

)
+ Et (πt+1 − π) .

6.3 GE Taylor Rule for Exogeneous Growth Economy

Interestingly, the GE Taylor rule has the same form even for the

exogenous growth economy

Rt −R = ΩθEt
(
gc,t+1 − g

)
+ Ωψ (1− θ) l

1− lEtgl,t+1 + ΩEt (πt+1 − π)

−ΩREt
(
Rt+1 −R

)
− ΩVEtgV,t+1

in which case g stands for the exogenous growth rate of labor-

augmenting productivity. And if there is no physical capital, then

again y = c and

Rt −R = ΩθEt
(
gy,t+1 − g

)
+ Ωψ (1− θ) l

1− lEtgl,t+1 + ΩEt (πt+1 − π)

−ΩREt
(
Rt+1 −R

)
− ΩVEtgV,t+1.

With no leisure preference, and no banking (AF = 0), again the

simple standard from results.

Rt −R = θEt
(
gy,t+1 − g

)
+ Et (πt+1 − π) .
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Despite the fact that the above Taylor conditions looks the same

for the models with exogenous and endogenous growth, there is

a fundamental difference between these two. First, and most im-

portantly, under the exogenous growth setup the targeted inflation

rate and growth rate of the economy are completely unrelated (and

so considered independently). In contrast, under the endogenous

growth setup the targets for inflation, the growth rate, and the

nominal interest rate are all endogenously determined. Only in the

log-utility case is the nominal interest R independent of the growth

rate, and rather a simple additive function approximately of the sta-

tionary money supply growth rate and the rate of time preference.

However, in the log-utility case, the BGP inflation rate and growth

rate are still simultaneously determined as endogenous variables.

7 Discussion

While there is an extensive and a growing body of literature on the

issues of indeterminacy in economies starting with Sargent and Wal-

lace (1975) and McCallum (1981) and recently by Cochrane (2007),

Atkeson, Chari and Kehoe (2009) and Adao, Correia and Teles

(2011), here we consider only the equilibrium within the general

equilibrium economy. The price path is quite determinate. And the

policy associated with the Taylor condition is fully implementable,

through money supply policy in the sense of Alvarez, Lucas and

Weber (2001). "Targets" now have a precise economic equilibrium

determination rather than being arbitrarily set exogenous parts of a

Taylor rule. The targets are the economy’s BGP equilibrium values.

The structure of a general equilibrium Taylor Condition results

in a specific form from the economy. Therefore, if the economy

contains an equilibrium condition for the nominal interest rate, in

the form here that we call the Taylor Condition, while derived from
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a flexible price DSGE model with exogenous money supply, then

the economy behaves as the one under an exogenous growth money

supply process, even while exhibiting a type of Taylor rule, "cen-

tral bank interest targeting", behavior. This is the key point of the

paper. Further, estimation of the Taylor condition using simulated

data verifies that such a Taylor rule estimation would spuriously

be called central bank interest targeting behavior; rather such esti-

mations in the literature may simply be estimating the equilibrium

condition of the economy with a money supply policy.

Note that regarding inflation persistence, Dittmar, Gavin and

Kydland (2005) focus on how assumptions about money supply

within a Taylor rule context can lead to any degree of inflation

persistence. This would also be expected within our model here.

Exploring this would be an interesting extension.

There are some real results in the above tables. First the "Tay-

lor principle" of an above unity inflation coeffi cient happens in the

theory only when money velocity is greater than one, and indeed it

is found to hold very near to its theoretical value in the estimation

of the correct model in the first set of tables. At the same time,

velocity plays a key role as being both a significant variable in itself,

and being the key to how big the coeffi cient of the inflation coeffi -

cient will be. The significance of velocity comes from variation in

velocity growth over the sample data period, while the magnitude

of the inflation coeffi cient comes from the BGP level of velocity.

Replacing consumption growth by output growth is seen to have

its perils when the correct model is with consumption growth. And a

forward interest term is indeed robust in the correct "well-formulated"

model, in McCallum (2008) terms, but not robust when using mis-

specified models, something of focus in Taylor and Wieland (2010).
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8 Conclusion

The paper has derived a general equilibrium condition in dynamic

and balanced growth path cases for a constant relative risk aversion

economy with leisure, endogenous growth through a separate human

capital investment sector as in Lucas (1988), and with endogenous

velocity through production of exchange credit in a financial inter-

mediary as based in that literature. The importance of velocity in

producing the Taylor principle is consistent with velocity importance

found in Reynerd (2004). The paper also looked at special cases with

log-utility, and with a simple cash-in-advance constraint in which ve-

locity is one. While providing a theoretical means to overview the

Taylor empirical literature, such as reviewed by Siklos and Wohar

(2005), here the immediate focus was first to show that estimation

of a Taylor rule may result in a spurious inference that the central

bank is engaged in Taylor principle behaviour, rather than simply

supplying money. We go some distance in proving this point in the

sense of generating artificial data and estimating rather successfully

our theoretical Taylor Condition that is simply an equilibrium con-

dition in the economy in which the central bank makes changes in

the money supply growth rate. For example, such money supply

changes tend to occur whenever the "fiscal inflation tax" needs to

be resorted to in order to finance deficits such as during the current

banking and recession crisis, or during war in general, which some

construe to be the source of the deficit problem of the last decade.

Money velocity growth itself enters as a variable and ends up

playing a potentially significant role; in particular when velocity is

changing significantly such as during the recent bank crisis and the

1930s when velocity cycled downwards, as identified in Benk et al.

(2010). This velocity theoretically is made endogenous in the model

following the banking financial intermediation microeconomic litera-
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ture of producing financial services with a Cobb-Douglas production

function including deposited funds as a factor.

The paper exhibits thereby how the banking production of ex-

change credit is surprising crucial to the derivation of a Taylor prin-

ciple whereby the coeffi cient on the inflation term is in fact greater

than one. This results only through the endogenization of velocity;

a simple cia cash-only constraint with a velocity of one gives a unity

coeffi cient on inflation. Through the endogenization of growth, we

can derive an output gap measure not inconsistent with Taylor and

Wieland’s (2010) emphasis on changes in output as a measure for

the output gap. In our model, the output growth term does enter

if we also include an investment growth term; otherwise the con-

sumption growth is the "output gap" term of the model’s Taylor

Condition.

Estimation results are also given for certain misspecified models,

relative to the generated data, and indeed the effects on the results

are substantial. The results may give a way to better understand

to how the estimate Taylor rules so as to better account for changes

in underlying conditions, including times when changes in velocity

are significant because of bank productivity collapses, such as has

apparently occurred during the recent/current recession and bank

crisis. Omitting this term as in almost all standard Taylor rules may

induce significant omitted variable bias. Misspecification bias does

seem apparent in our estimation of a simple Taylor rule when using

the original data from the general equilibrium model. Therefore the

results hold promise for explaining comparisons of estimated rules

across different periods and countries, as well as during bank crises,

sudden financial deregulations, or times of other significant shifts

in money velocity, a task which would help organize this disparate

literature.

By simulating data of the model and estimating successfully a
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Taylor Rule from the data, the paper implies that identification of

a Taylor rule econometrically may simply be identification of part

of the economy’s asset price behaviour when a central bank prints

money. It may be spurious to claim that such Taylor estimations

show how the central bank actually conducts policy through interest

rate targeting rather than through a more simple fiscal satisfaction

of its spending needs through direct and indirect taxes including

inflation.
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