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Abstract

This paper examines the implications of imperfect information for optimal monetary policy with a

consistent set of informational assumptions for the modeller and the private sector. The assumption

that agents have no more information than the economist who constructs and estimates the model

on behalf of the policymaker, amounts to what we term the informational consistency principle. We

use an estimated simple NK model from Levine et al. (2010), where the assumption of symmetric

imperfect information significantly improves the fit of the model to US data. The policy questions

we then pose are first, what are the welfare costs associated with the private sector possesses only

imperfect information of the state variables; second, what are the implications of imperfect information

for the gains from commitment and third, how does imperfect information affect the form of optimized

Taylor rules to assess the welfare costs of imperfect information under commitment, discretion and

simple Taylor-type rules. Our main results are: limiting information to only lagged macro-variables

has significant implications both for welfare and for the form of the simple rule. In the unconstrained

exercise without ZLB concerns, the gains from commitment are very small, but variances of the nominal

interest rate indicate that the ZLB needs to be addressed. Then the picture changes drastically and

the welfare gains from commitment are large. A price-level rule mimics the optimal commitment rule

best and we observe a ‘tying one’s hands’ effect in which under discretion there are welfare gains from

only observing lagged rather than current output and inflation.
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1 Introduction

The formal estimation of DSGE models by Bayesian methods has now become standard.1

However, as Levine et al. (2007) first pointed out, in the standard approach there is an im-

plicit asymmetric informational assumption that needs to be critically examined: whereas

perfect information about current shocks and other macroeconomic variables is available

to the economic agents, it is not to the econometricians. This underlying informational as-

sumption corresponds to the second category above. By contrast, in Levine et al. (2007) and

Levine et al. (2010) a symmetric information assumption is adopted. This can be thought

of as the informational counterpart to the “cognitive consistency principle” proposed in

Evans and Honkapohja (2009) which holds that economic agents should be assumed to be

“about as smart as, but no smarter than good economists”. The assumption that agents

have no more information than the economist who constructs and estimates the model on

behalf of the policymaker, amounts to what we term the informational consistency principle

(ICP). Certainly the ICP seems plausible and in fact Levine et al. (2010) shows that this

informational assumption improves the empirical performance of a standard NK model.2

The focus of our paper here is on the implications of imperfect information for optimal

monetary policy. The questions we pose are first, what are the welfare costs associated with

the private sector possesses only imperfect information of the state variables; second, what

are the implications of imperfect information for the gains from commitment and third,

how does imperfect information affect the form of optimized Taylor rules.

A sizeable literature now exists on this subject - a by no means exhaustive selection

of contributions include: Cukierman and Meltzer (1986), Pearlman (1992), Svensson and

Woodford (2001), Svensson and Woodford (2003), Faust and Svensson (2001), Faust and

Svensson (2002) Aoki (2003), Aoki (2006) and and (Melecky et al. (2008).3 However, as far

as we are aware, it is the first paper to study the latter in a estimated DSGE model with

informational consistency at both the estimation and policy design stages of the exercise.

The rest of the paper is organized as follows. Section 2 describes the standard NK model

used for the policy analysis. Section 3 sets out the general solution procedure for solving

such a model under imperfect information given a particular (and usually sub-optimal)

policy rule. Section 4 describes the estimation by Bayesian methods drawing upon Levine

et al. (2010). Section 5 sets out the general framework for calculating optimal policy. Sec-

tion 6 turns to optimal policy assuming perfect information for both the private sector

and the policymaker, first assuming an ability to commit, second assuming no commitment

mechanism is available and the central bank exercises discretion and third, assuming policy

conducted in the form of a simple interest rate, Taylor-type rule. A novel feature of treat-

1See Fernandez-Villaverde (2009) for a comprehensive and accessible review.
2The possibility that imperfect information in NK models improves the empirical fit has also been ex-

amined by Collard and Dellas (2004), Collard and Dellas (2006), Collard et al. (2009), although an earlier
assessment of the effects of imperfect information for an IS-LM model dates back to Minford and Peel (1983)

3Section provides a taxonomy of the various assumed information structures assumed in these papers.
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ment is the consideration the zero lower bound in the design of policy rules. In section 6

both sets of agents, the central bank and the private sector observed the full state vector

describing the model model dynamics. Section 7 relaxes this assumption by allowing two

forms of symmetric imperfect information and considers rules that correspond to the ICP

adopted at the estimation side. Section 8 provides an application of optimal policy under

perfect and imperfect information using our estimated DSGE model. Section 9 concludes.

2 The Model

We utilize a fairly standard NK model with a Taylor-type interest rate rule, one factor of

production (labour) and constant returns to scale. The simplicity of our model facilitates

the separate examination of different sources of persistence in the model. First, the model

in its most general form has external habit in consumption habit and price indexing. These

are part of the model, albeit ad hoc in the case of indexing, and therefore endogenous. Per-

sistent exogenous shocks to demand, technology and the price mark-up classify as exogenous

persistence. A key feature of the model is a further endogenous source of persistence that

arises when agents have imperfect information and learn about the state of the economy

using Kalman-filter updating.

The full model in non-linear form is as follows

1 = β(1 +Rt)Et

[
MUC

t+1

MUC
t Πt+1

]
(1)

Wt

Pt
= − 1

(1− 1
η )

MUL
t

MUC
t

(2)

MCt =
Wt

AtPt
(3)

Ht − ξβEt[Π̃
ζ−1
t+1Ht+1] = YtMUC

t (4)

Jt − ξβEt[Π̃
ζ
t+1Jt+1] =

1

1− 1
ζ

MCtMStYtMUC
t (5)

Yt =
AtLt

∆t
where ∆t ≡

1

n

n∑
j=1

(Pt(j)/Pt)
−ζ (6)

1 = ξΠ̃ζ−1
t + (1− ξ)

(
Jt
Ht

)1−ζ

where Π̃t ≡
Πt

Πγ
t−1

(7)

Yt = Ct +Gt (8)

Equation (1) is the familiar Euler equation with β the discount factor, 1 + Rt the gross

nominal interest rate, MUC
t the marginal utility of consumption and Π ≡ Pt

Pt−1
the gross

inflation rate, with Pt the price level. The operator Et[·] denotes rational expectations

conditional upon a general information set (see section 4). In (2) the real wage, Wt
Pt

is a

mark-up on the marginal rate of substitution between leisure and consumption. MUL
t is
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the marginal utility of labour supply Lt. Equation (3) defines the marginal cost. Equations

(4) to (7) describe Calvo pricing with 1 − ξ equal to the probability of a monopolistically

competitive firm re-optimizing its price, indexing by an amount γ with an exogenous mark-

up shock MSt. They are derived from the optimal price-setting first-order condition for a

firm j setting a new optimized price P 0
t (j) given by

P 0
t (j)Et

[ ∞∑
k=0

ξkDt,t+kYt+k(j)

(
Pt+k−1

Pt−1

)γ
]
=

κ

(1− 1/ζ)
Et

[ ∞∑
k=0

ξkDt,t+kPt+kMCt+kYt+k(j)

]
(9)

where the stochastic discount factor Dt,t+k = βk MUC
t+k/Pt+k

MUC
t /Pt

, MSt is a mark-up shock

common to all firms and demand for firm j’s output, Yt+k(j), is given by

Yt+k(j) =

(
P 0
t (j)

Pt+k

)−ζ

Yt+k (10)

All of these nonlinear equations depend in part on expectations of future variables. How

these expectations are formed depends on individual agents, and these may be rational or

adaptive, which are the possibilities that we consider here, or may be formed on the basis

of least squares learning.

In equilibrium all firms that have the chance to reset prices choose the same price

P 0
t (j) = P 0

t and
P 0
t

Pt
= Jt

Ht
is the real optimized price in (??) and (7).

Equation (6) is the production function with labour the only variable input into pro-

duction and the technology shock At exogenous. Price dispersion ∆t, defined by (??), can

be shown for large n, the number of firms, to be given by

∆t = ξΠ̃ζ
t∆t−1 + (1− ξ)

(
Jt
Ht

)−ζ

(11)

Finally (8), where Ct denotes consumption, describes output equilibrium, with an exogenous

government spending demand shock Gt. To close the model we assume a current inflation

based Taylor-type interest-rule

log(1 +Rt) = ρr log(1 +Rt−1) + (1− ρr)

(
θπ log

Πt

Πtar,t
+ log(

1

β
) + θy log

Yt
Y

)
+ ϵe,t (12)

where Πtar,t is a time-varying inflation target following an AR(1) process, (??), and ϵe,t is a

monetary policy shock.4 The following form of the single period utility for household r is a

non-separable function of consumption and labour effort that is consistent with a balanced

growth steady state:

Ut =

[
(Ct(r)− hCCt−1)

1−ϱ(1− Lt(r))
ϱ
]1−σ

1− σ
(13)

4Note the Taylor rule feeds back on output relative to its steady state rather than the output gap so we
avoid making excessive informational demands on the central bank when implementing this rule.
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where hCCt−1 is external habit. In equilibrium Ct(r) = Ct and marginal utilities MUC
t

and MUL
t are obtained by differentiation:

MUC
t = (1− ϱ)(Ct − hCCt−1)

(1−ϱ)(1−σ)−1(1− Lt)
ϱ(1−σ) (14)

MUL
t = −(Ct − hCCt−1)

(1−ϱ)(1−σ)ϱ(1− Lt)
ϱ(1−σ)−1 (15)

Shocks At = Aeat , Gt = Gegt , Πtar,t are assumed to follow log-normal AR(1) pro-

cesses, where A, G denote the non-stochastic balanced growth values or paths of the

variables At, Gt. Following Smets and Wouters (2007) and others in the literature, we

decompose the price mark-up shock into persistent and transient components: MSt =

MSpere
mspertMStrae

εmstra,t where mspert is an AR(1) process, which results in MSt being

an ARMA(1,1) process. We can normalize A = 1 and put MS = MSper = MStra = 1 in

the steady state. The innovations are assumed to have zero contemporaneous correlation.

This completes the model. The equilibrium is described by 14 equations, (1)–(8), (12) and

the expressions for MUC
t and MUL

t , defining 13 endogenous variables Πt Π̃t Ct Yt ∆t Rt

MCt MUC
t Ut MUL

t Lt Ht Jt and
Wt
Pt

. There are 6 shocks in the system: At, Gt, MSper,t,

MStra,t, Πtar,t and ϵe,t.

Bayesian estimation is based on the rational expectations solution of the log-linear

model.5 The conventional approach assumes that the private sector has perfect information

of the entire state vector muCt , πt, πt−1, ct−1, and, crucially, current shocks mspert, mst,

at. These are extreme information assumptions and exceed the data observations on three

data sets yt, πt and rt that we subsequently use to estimate the model. If the private sector

can only observe these data series (we refer to this as symmetric information) we must turn

from a solution under perfect information on the part of the private sector (later referred

to as asymmetric information – AI since the private sector’s information set exceeds that

of the econometrician) to one under imperfect information – II.

3 General Solution with Imperfect Information

The model with a particular and not necessarily optimal rule is a special case of the following

general setup in non-linear form

Zt+1 = J(Zt, EtZt, Xt, EtXt) + νσϵϵt+1 (16)

EtXt+1 = K(Zt, EtZt, Xt, EtXt) (17)

where Zt, Xt are (n−m)× 1 and m× 1 vectors of backward and forward-looking variables,

respectively, and ϵt is a ℓ × 1 shock variable, ν is an (n −m) × ℓ matrix and σϵ is a small

5Lower case variables are defined as xt = log Xt
X

. rt and πt are log-deviations of gross rates. Details of
the linearization are provided in Appendix A.
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scalar. In log-linearized form the state-space representation is[
zt+1

Etxt+1

]
=

[
A11 A12

A21 A22

][
zt

xt

]
+B

[
Etzt

Etxt

]
+

[
ut+1

0

]
(18)

where zt, xt are vectors of backward and forward-looking variables, respectively, and ut

is a shock variable; a more general setup allows for shocks to the equations involving

expectations. In addition we assume that agents all make the same observations at time t,

which are given, in non-linear and linear forms respectively, by

Mobs
t = m(Zt, EtZt, Xt, EtXt) + µσϵϵt (19)

mt =
[
M1 M2

] [ zt

xt

]
+
[
L1 L2

] [ Etzt

Etxt

]
+ vt (20)

where µσϵϵt and vt represents measurement errors. Given the fact that expectations of

forward-looking variables depend on the information set, it is hardly surprising that the

absence of full information will impact on the path of the system.

In order to simplify the exposition we assume terms in EtZt and EtXt do not appear

in the set-up so that in the linearized form B = L = 0.6 Full details of the solution for the

general setup are provided in PCL.

In our model expressed in linearized form (see Appendix A) we consider two forms of

imperfect information for the private sector consistent with the ICP

Information Set I: mt =

 yt

πt

rt

 (21)

Information Set II: mt =

 yt−1

πt−1

rt

 (22)

This contrasts with the information set under perfect information which consists of all the

state variables including the shock processes at, gt, etc.

3.1 Linear Solution Procedure

Now we turn to the solution for (18) and (20). First assume perfect information. Following

Blanchard and Kahn (1980), it is well-known that there is then a saddle path satisfying:

xt +Nzt = 0 where
[
N I

] [ A11 A12

A21 A22

]
= ΛU

[
N I

]
6In fact our model is of this simplified form.
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where ΛU has unstable eigenvalues. In the imperfect information case, following PCL, we

use the Kalman filter updating given by[
zt,t

xt,t

]
=

[
zt,t−1

xt,t−1

]
+ J

[
mt −

[
M1 + L1 M2 + L2

] [ zt,t−1

xt,t−1

]]

where we denote zt,t ≡ Et[zt] etc. Thus the best estimator of the state vector at time t−1 is

updated by multiple J of the error in the predicted value of the measurement. The matrix

J is given by

J =

[
PDT

−NPDT

]
Γ−1

where D ≡ M1 − M2A
−1
22 A21, M ≡ [M1 M2] is partitioned conformably with

[
zt

xt

]
,

Γ ≡ EPDT + V where E ≡ M1 + L1 − (M2 + L2)N , V = cov(vt) is the covariance matrix

of the measurement errors and P satisfies the Ricatti equation (26) below.

Using the Kalman filter, the solution as derived by PCL7 is given by the following

processes describing the pre-determined and non-predetermined variables zt and xt and a

process describing the innovations z̃t ≡ zt − zt,t−1:

Predetermined : zt+1 = Czt + (A− C)z̃t + (C −A)PDT (DPDT + V )−1(Dz̃t + vt)

+ ut+1 (23)

Non-predetermined : xt = −Nzt + (N −A−1
22 A21)z̃t (24)

Innovations : z̃t+1 = Az̃t −APDT (DPDT + V )−1(Dz̃t + vt) + ut+1 (25)

where

C ≡ A11 −A12N, A ≡ A11 −A12A
−1
22 A21, D ≡ M1 −M2A

−1
22 A21

and P is the solution of the Riccati equation given by

P = APAT −APDT (DPDT + V )−1DPAT + U (26)

where U ≡ cov(ut) is the covariance matrix of the shocks to the system. The measurement

mt can now be expressed as

mt = Ezt + (D − E)z̃t + vt − (D − E)PDT (DPDT + V )−1(Dz̃t + vt) (27)

We can see that the solution procedure above is a generalization of the Blanchard-Kahn

solution for perfect information by putting z̃t = vt = 0 to obtain

zt+1 = Czt + ut+1 ; xt = −Nzt (28)

7A less general solution procedure for linear models with imperfect information is in Lungu et al. (2008)
with an application to a small open economy model, which they also extend to a non-linear version.
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By comparing (28) with (23) we see that the determinacy of the system is independent

of the information set. This is an important property that contrasts with the case where

private agents use statistical learning to form forward expectations.8

3.2 The Filtering and Likelihood Calculations

To evaluate the likelihood for a given set of parameters (prior to multiplying by their prior

probabilities), the econometrician takes the equations (23), (25) and (27) as given, and

for the case when measurement error shocks are zero9 evaluates the the Kalman filtering

equations for zt,t−1 and Zt ≡ cov(zt):

zt+1,t = Czt,t−1 + CZtD
T (DPDT )−1et et ≡ wt − Ezt,t−1

Zt+1 = CZtC
T + PDT (DPDT )−1DP − CZtE

T (EZtE
T )−1EZtC

T (29)

the latter being a time-dependent Riccati equation.

The period-t likelihood function is standard:

2 lnL = −
∑

ln det(cov(et)−
∑

eTt (cov(et))
−1et

where from et ≡ wt − Ezt,t−1 and (27)

cov(et) = EZtE

The system is initialized at z1,0 = Z0 = 0 to obtain Z1 from (29).

3.3 When Can Perfect Information be Inferred?

We now pose the question: under what conditions do the RE solutions under perfect and

imperfect information actually differ? By observing a subset of outcomes can agents actually

infer the full state vector, including shocks?

To answer this basic question we first explore the possibility of representing the solution

to the model under imperfect information as a VAR.10 First define

st ≡

[
zt

z̃t

]
and ϵt ≡

[
ut

vt−1

]
and

mt =
[
M̃1 M̃2

] [ st

xt

]
+ vt (30)

8Our imperfect information framework encompasses the rational inattention approach of Sims (2005),
Adam (2007) and Luo and Young (2009) as a special case. See Levine et al. (2010).

9It is straightforward to generalize to the the case for V non-zero.
10This section essentially generalizes Fernandez-Villaverde et al. (2007) to the case of imperfect informa-

tion.
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Then the solution set out in the previous section can be written as

st+1 = Ãst + B̃ϵt+1 (31)

xt = −Ñst (32)

where Ã, B̃ and Ñ are functions of A, B, C, N , P , D, U and V . Hence

mt+1 = (M̃1 − M̃2Ñ)(Ãst + B̃ϵt+1) + vt+1 ≡ C̃st + D̃ϵt+1 (33)

Suppose that the number of shocks=the number of observed variables. With at least one

shock this can only be true if there is no measurement error; so we also put vt = 0. With

this assumption D is square. Suppose first that it is invertible. Then we can write

ϵt+1 = D̃−1(mt+1 − C̃st)

Substituting into (31) we then have

[I − (Ã− B̃D̃−1C̃)L]st+1 = B̃D̃−1mt+1

Iterating we arrive at

st =

∞∑
j=0

[Ã− B̃D̃−1C̃]jB̃D̃−1mt−j (34)

mt+1 = C̃
∞∑
j=0

[Ã− B̃D̃−1C̃]jB̃D̃−1wt−j + D̃ϵt+1 (35)

Then provided matrix [Ã − B̃D̃−1C̃] has stable eigenvalues, the summations converge.11

Then (35) is an infinite VAR representation of the solution to our DSGE model. Fur-

thermore, from (34), observations on the history of mt imply that st is observed. This

is consistent with our full information RE assumption. Thus we have the result that if

agents observe mt without measurement error and if the number of shocks = the number

of observations, then by observing the latter agents can infer the full state vector if D̃ is

invertible. Imperfect information is equivalent to complete information in this special case.

Under what conditions would D̃ be singular? An obvious case is under imperfect in-

formation case II where some variables are observed only with a lag. Then the current

shocks cannot influence these observed variables so some of rows (two in this case) are zero

11This is an innocuous requirement, and in general would be imposed in order to ensure uniqueness. In
fact, provided that A has stable eigenvalues, then the wt process is stationary. There are a finite number
of representations of wt of the form (31) and (33), which are all factorizations of the spectral density for
wt given by (D+C(I −AL)−1BL)Σ(D′ +B′(I −A′L−1)−1C′L−1) where Σ = var(εt). Conventionally one
chooses the values of B,C,D which ensure that the system is invertible, namely that ε can be expressed
as a stable representation in w. For example, the following two representations of mt have identical second
moment properties: mt = θεt − εt−1, wt = εt − θεt−1, but only the latter is invertible for −1 < θ < 1.

8



meaning D̃ is not invertible. In our model then, both these sufficient conditions for imper-

fect information collapsing to the perfect information case do not hold, so we can expect

differences between the two cases.12

4 Bayesian Estimation

In the same year that Blanchard and Kahn (1980) provide a general solution for a linear

model under RE in the state space form, Sims (1980) suggests the use of Bayesian methods

for solving multivariate systems. This leads to the development of Bayesian VAR (BVAR)

models (Doan et al. (1984)), and, during the 1980s, the extensive development and appli-

cation of Kalman filtering-based state space systems methods in statistics and economics

(Aoki (1987), Harvey (1989)).

Modern DSGE methods further enhance this Kalman filtering based Bayesian VAR state

space model with Monte-Carlo Markov Chain (MCMC) optimising, stochastic simulation

and importance-sampling (Metropolis-Hastings (MH) or Gibbs) algorithms. The aim of this

enhancement is to provide the optimised estimates of the expected values of the currently

unobserved, or the expected future values of the variables and of the relational parameters

together with their posterior probability density distributions (Geweke (1999)). It has been

shown that DSGE estimates are generally superior, especially for the longer-term predictive

estimation than the VAR (but not BVAR) estimates (Smets and Wouters (2007)), and

particularly in data-rich conditions (Boivin and Giannoni (2005)).

The crucial aspect is that agents in DSGE models are forward-looking. As a con-

sequence, any expectations that are formed are dependent on the agents’ information set.

Thus unlike a backward-looking engineering system, the information set available will affect

the path of a DSGE system.

The Bayesian approach uses the Kalman filter to combine the prior distributions for

the individual parameters with the likelihood function to form the posterior density. This

posterior density can then be obtained by optimizing with respect to the model parameters

through the use of the Monte-Carlo Markov Chain sampling methods. Four variants of

our linearized model are estimated using the Dynare software (Juillard (2003)), which has

been extended by the paper’s authors to allow for imperfect information on the part of the

private sector.

In the process of parameter estimation, the mode of the posterior is first estimated using

Chris Sim’s csminwel after the models’ log-prior densities and log-likelihood functions are

obtained by running the Kalman recursion and are evaluated and maximized. Then a

sample from the posterior distribution is obtained with the Metropolis-Hasting algorithm

using the inverse Hessian at the estimated posterior mode as the covariance matrix of the

jumping distribution. The scale used for the jumping distribution in the MH is set in order

12In fact many NK DSGE models do have the property that the number of shocks equal the number of
observable and the latter are current values without lags - for example Smets and Wouters (2003).
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to allow a good acceptance rate (20%-40%). A number of parallel Markov chains of 100000

runs each are run for the MH in order to ensure the chains converge. The first 25% of

iterations (initial burn-in period) are discarded in order to remove any dependence of the

chain from its starting values.

4.1 Data and Priors

To estimate the system, we use three macro-economic observables at quarterly frequency

for the US: real GDP, the GDP deflator and the nominal interest rate. Since the variables

in the model are measured as deviations from a constant steady state, the time series are

simply de-trended against a linear trend in order to obtain approximately stationary data.

As a robustness check we also ran estimations using an output series detrending output with

a linear-quadratic trend. Following Smets and Wouters (2003), all variables are treated as

deviations around the sample mean. Real variables are measured in logarithmic deviations

from linear trends, in percentage points, while inflation (the GDP deflator) and the nominal

interest rate are detrended by the same linear trend in inflation and converted to quarterly

rates. The estimation results are based on a sample from 1981:1 to 2006:4.

The values of priors are taken from Levin et al. (2006) and Smets and Wouters (2007).

Table 8 in Appendix D provides an overview of the priors used for each model variant

described below. In general, inverse gamma distributions are used as priors when non-

negativity constraints are necessary, and beta distributions for fractions or probabilities.

Normal distributions are used when more informative priors seem to be necessary. We

use the same prior means as in previous studies and allow for larger standard deviations,

i.e. less informative priors, in particular for the habit parameter and price indexation. The

priors on ξ are the exception and based on Smets and Wouters (2007) with smaller standard

deviations. Also, for the parameters γ, hC , ξ and ϱ we centre the prior density in the middle

of the unit interval. The priors related to the process for the price mark-up shock are

taken from Smets and Wouters (2007). The priors for µ1, µ2, µ3, λh, λf are also assumed

beta distributed with means 0.5 and standard deviations 0.2. Three of the structural

parameters are kept fixed in the estimation procedure. These calibrated parameters are

β = 0.99; L = 0.4, cy = 0.6.

4.2 Estimation Results

We consider 4 model variants: GH (γ, hC > 0), G (hC = 0), H (γ = 0) and Z (zero persis-

tence or γ = hC = 0). Then for each model variant we examine three information sets: first

we make the assumption that private agents are better informed than the econometricians

(the standard asymmetric information case in the estimation literature) – the Asymmetric

Information (AI) case. Then we examine two symmetric information sets for both econo-

metrician and private agents: Imperfect Information without measurement error on the

three observables rt, πt, yt (II) and measurement error on two observables πt, yt (IIME).
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This gives 12 sets of results. First Table 9 in Appendix D reports the parameter estimates

using Bayesian methods. It summarizes posterior means of the studied parameters and

90% confidence intervals for the four model specifications across the three information sets,

AI, II and IIME, as well as the posterior model odds. Overall, the parameter estimates are

plausible and reasonably robust across model and information specifications. The results

are generally similar to those of Levin et al. (2006) and Smets and Wouters (2007) for the

US, thus allowing us to conduct relevant empirical comparisons.

First it is interesting to note that the parameter estimates are fairly consistent across

the information assumptions despite the fact that these alternatives lead to a considerably

better model fit based on the corresponding posterior marginal data densities. Focusing

on the parameters characterising the degree of price stickiness and the existence of real

rigidities, we find that the price indexation parameters are estimated to be smaller than

assumed in the prior distribution (in line with those reported by Smets and Wouters (2007)).

The estimates of γ imply that inflation is intrinsically not very persistent in the relevant

model specifications. The posterior mean estimates for the Calve price-setting parameter,

ξ, obtained from Model GH across all the information sets imply an average price contract

duration of about 3 − 4 (quarters compared with the prior of 2 quarters) similar to the

findings of Christiano et al. (2005), Levin et al. (2006) and Smets and Wouters (2007).

The external habit parameter is estimated to be around 90% of past consumption, which

is somewhat higher than the estimates reported in Christiano et al. (2005), although this

turns out to be a very robust outcome of the estimated models.

In Table 1 we report the posterior marginal data density from the estimation which

is computed using the Geweke (1999) modified harmonic-mean estimator. The marginal

data density can be interpreted as maximum log-likelihood values, penalized for the model

dimensionality, and adjusted for the effect of the prior distribution (Chang et al. (2002)).

Appendix E compares these results obtained with linear trend with those where output

is detrended using a linear-quadratic trend. In fact the results change very little, so we

continue to use linear detrending. Whichever model variant has the highest marginal data

density attains the best relative model fit. The values for imperfect information with

measurement error are virtually identical to those without measurement error, so we have

excluded them from the table.

Model AI II IIME

H -92.85 -90.90 -92.18

G -103.77 -102.03 -99.79

GH -96.95 -96.62 -94.74

Z -99.48 -96.48 -97.14

Table 1: Marginal Log-likelihood Values Across Model Variants and Information Sets

The model posterior probabilities are constructed as follows. Let pi (θ|mi) represent

11



the prior distribution of the parameter vector θ ∈ Θ for some model mi ∈ M and let

L (y|θ,mi) denote the likelihood function for the observed data y ∈ Y conditional on the

model and the parameter vector. Then the joint posterior distribution of θ for model mi

combines the likelihood function with the prior distribution:

pi (θ|y,mi) ∝ L (y|θ,mi) pi (θ|mi)

Bayesian inference also allows a framework for comparing alternative and potentially

misspecified models based on their marginal likelihood. For a given model mi ∈ M and

common dataset, the latter is obtained by integrating out vector θ,

L (y|mi) =

∫
Θ
L (y|θ,mi) p (θ|mi) dθ

where pi (θ|mi) is the prior density for model mi, and L (y|mi) is the data density for

model mi given parameter vector θ. To compare models (say, mi and mj) we calculate

the posterior odds ratio which is the ratio of their posterior model probabilities (or Bayes

Factor when the prior odds ratio, p(mi)
p(mj)

, is set to unity):

POi,j =
p(mi|y)
p(mj |y)

=
L(y|mi)p(mi)

L(y|mj)p(mj)
(36)

BFi,j =
L(y|mi)

L(y|mj)
=

exp(LL(y|mi))

exp(LL(y|mj))
(37)

in terms of the log-likelihoods. Components (36) and (37) provide a framework for com-

paring alternative and potentially misspecified models based on their marginal likelihood.

Such comparisons are important in the assessment of rival models.

Given Bayes factors we can compute the model probabilities p1, p2, · · ·pn for n models.

Since
∑n

i=1 pi = 1 we have that 1
p1

=
∑n

i=2BFi,1, from which p1 is obtained. Then pi =

p1BF (i, 1) gives the remaining model probabilities. These are reported in Table 2 where

we denote the probability of variant G, information assumption II say, by Pr(G, II) etc.

Pr(H, II)=0.688

Pr(H, IIME)=0.1913

Pr(H, AI)=0.0979

Pr(GH, IIME)=0.0148

Pr(Z, II)=0.0026

Pr(GH, II)=0.0023

Pr(GH, AI)=0.0016

Pr(Z, IIME)=0.0013

Remaining prob. are almost zero

Table 2: Model Probabilities Across Model Variants and Information Sets
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Tables 1 and 2 reveal that a combination of Model H and with information set II

outperforms the same with information set AI by a Bayes factor of approximately 7. For all

models II ≻ AI in terms of LL. This is a striking result; although informational consistency

in intuitively appealing there is no inevitability that models that assume this will perform

better in LL terms than the traditional assumption of AI. By the same token introducing

measurement error into the private sector’s observations (information set IIME) is not

bound to improve performance and indeed we see that the IIME case does not uniformly

improve LL performance except for models G and GH where we do see IIME ≻ II ≻ AI.

Our model comparison analysis contains two other important results. First, uniformly

across all information sets indexation does not improve the model fit, but the existence

of habit is crucial. The poor performance of indexation is in a sense encouraging as this

feature of the NK is ad hoc and vulnerable to the Lucas critique. The existence of habit by

contrast is a plausible formulation of utility that addresses issues examined in the happiness

literature.13 Second, the II as compared with AI specification leads to significantly better

fit for Model Z, and a better improvement than for the other three model variants. Model

Z we recall is the model with zero persistence mechanisms. Its substantial improvement

of performance on introducing II on the part of the private sector confirms our earlier

analytical results that show how II introduces endogenous persistence. But where other

persistence mechanisms habit and indexation exist in models H and GH these to some

extent overshadow the improvement brought by II.

5 The General Set-Up and Optimal Policy Problem

This section describes the general set-up that applies irrespective of the informational as-

sumptions. Removing the estimated rule (12), for a given set of observed policy instruments

wt we now consider a linearized model in a general state-space form:[
zt+1

Etxt+1

]
= A1

[
zt

xt

]
+A2

[
Etzt

Etxt

]
+Bwt +

[
ut+1

0

]
(38)

where zt, xt are vectors of backward and forward-looking variables, respectively, wt is a

vector of policy variables, and ut is a i.d. zero mean shock variable with covariance matrix

Σu; a more general setup allows for shocks to the equations involving expectations. In

addition for the imperfect information case, we assume that agents all make the same

observations at time t, which are still given by (20).

Define target variables st by

st = Jyt +Hwt (39)

13In particular the “Easterin paradox”, Easterlin (2003). See also Layard (2006) and Choudhary et al.
(2011) for the role of external habit in the explanation of the paradox.
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Then the policy-maker’s loss function at time t by

Ωt =
1

2

∞∑
τ=0

βt[sTt+τQ1st+τ + wT
t+τQ2wt+τ ] (40)

This could be an ad hoc loss function or a large distortions approximation to the household’s

utility as described in Levine et al. (2008a). Substituting (39) into (40) results in the

following form of the loss function used subsequently in the paper

Ωt =
1

2

∞∑
i=0

βt[yTt+τQyt+τ + 2yTt+τUwt+τ + wT
t+τRwt+τ ] (41)

where Q = JTQ1M , U = JTQ1H, R = Q2 + HTQ1H, Q1 and Q2 are symmetric and

non-negative definite, R is required to be positive definite and β ∈ (0, 1) is discount factor.

For the literature described in the introduction, rational expectations are formed as-

suming the following information sets:

1. For perfect information the private sector and policymaker/modeller have the follow-

ing information set:

It = {zτ , xτ}, τ ≤ t;A1, A2, B,Σu, [Q,U,R, β] or the monetary rule

2. For symmetric imperfect information (see Pearlman (1992), Svensson and Woodford

(2003) and for Bayesian estimation, Levine et al. (2010)):

It = {mτ}, τ ≤ t;A1, A2, B,M1,M2, L,Σu,Σv, [Q,U,R, β] or the monetary rule.

3. For the first category of asymmetric imperfect information (see Svensson and Wood-

ford (2001), Aoki (2003), Aoki (2006) and standard Bayesian estimation):

Ipst = It = {zτ , xτ}, τ ≤ t;A1, A2, B,Σu, [Q,U,R, β] or the monetary rule for the pri-

vate sector and

Ipolt = {mτ}, τ ≤ t;A1, A2, B,M1,M2, L,Σu,Σv, [Q,U,R, β] or the monetary rule for

the policymaker.

4. For the second category of asymmetric imperfect information (see Cukierman and

Meltzer (1986), Faust and Svensson (2001), Faust and Svensson (2002)) and (Melecky

et al. (2008)):

Ipolt = {mτ}, τ ≤ t;A1, A2, B,M1,M2, L,Σu,Σv, [Q,U,R, β] or the monetary rule for

the policymaker sector and

Ipst = {mτ}, τ ≤ t;A1, A2, B,M1,M2, L,Σu,Σv for the private sector.

In the rest of the paper we confine ourselves to information set 1 for perfect information

and information set 2 for imperfect information. Information set 3 is incompatible with the

ICP. Information set 4 is however compatible and is needed to address the issue of optimal

ambiguity. However this interesting case is beyond the scope of this paper.
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6 Optimal Policy Under Perfect Information

Under perfect information,

[
Etzt

Etxt

]
=

[
zt

xt

]
. Let A ≡ A1 + A2 and first consider the

purely deterministic problem with a model then in state-space form:[
zt+1

xet+1,t

]
= A

[
zt

xt

]
+Bwt (42)

where zt is an (n − m) × 1 vector of predetermined variables including non-stationary

processed, z0 is given, wt is a vector of policy variables, xt is an m × 1 vector of non-

predetermined variables and xet+1,t denotes rational (model consistent) expectations of xt+1

formed at time t. Then xet+1,t = xt+1 and letting yTt =
[
zTt xTt

]
(42) becomes

yt+1 = Ayt +Bwt (43)

The procedures for evaluating the three policy rules are outlined in the rest of this

section (or Currie and Levine (1993) for a more detailed treatment).

6.1 The Optimal Policy with Commitment

Consider the policy-maker’s ex-ante optimal policy at t = 0. This is found by minimizing Ω0

given by (41) subject to (43) and (39) and given z0. We proceed by defining the Hamiltonian

Ht(yt, yt+1, µt+1) =
1

2
βt(yTt Qyt + 2yTt Uwt + wT

t Rwt) + µt+1(Ayt +Bwt − yt+1) (44)

where µt is a row vector of costate variables. By standard Lagrange multiplier theory we

minimize

L0(y0, y1, . . . , w0, w1, . . . , µ1, µ2, . . .) =
∞∑
t=0

Ht (45)

with respect to the arguments of L0 (except z0 which is given). Then at the optimum,

L0 = Ω0.

Redefining a new costate column vector pt = β−tµT
t , the first-order conditions lead to

wt = −R−1(βBTpt+1 + UT yt) (46)

βATpt+1 − pt = −(Qyt + Uwt) (47)

Substituting (46) into (43)) we arrive at the following system under control[
I βBR−1BT

0 β(AT − UR−1BT )

][
yt+1

pt+1

]
=

[
A−BR−1UT 0

−(Q− UR−1UT I

][
yt

pt

]
(48)

To complete the solution we require 2n boundary conditions for (48). Specifying z0
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gives us n−m of these conditions. The remaining condition is the ‘transversality condition’

lim
t→∞

µT
t = lim

t→∞
βtpt = 0 (49)

and the initial condition

p20 = 0 (50)

where pTt =
[
pT1t p

T
2t

]
is partitioned so that p1t is of dimension (n−m)× 1. Equation (39),

(46), (48) together with the 2n boundary conditions constitute the system under optimal

control.

Solving the system under control leads to the following rule

wt = −F

[
I 0

−N21 −N22

][
zt

p2t

]
≡ D

[
zt

p2t

]
= −F

[
zt

x2t

]
(51)

where [
zt+1

p2t+1

]
=

[
I 0

S21 S22

]
G

[
I 0

−N21 −N22

][
zt

p2t

]
≡ H

[
zt

p2t

]
(52)

N =

[
S11 − S12S

−1
22 S21 S12S

−1
22

−S−1
22 S21 S−1

22

]
=

[
N11 N12

N21 N22

]
(53)

xt = −
[
N21 N22

] [ zt

p2t

]
(54)

where F = −(R+BTSB)−1(BTSOPTA+ UT ), G = A−BF and

S =

[
S11 S12

S21 S22

]
(55)

partitioned so that S11 is (n − m) × (n − m) and S22 is m × m is the solution to the

steady-state Ricatti equation

S = Q− UF − F TUT + F TRF + β(A−BF )TS(A−BF ) (56)

The welfare loss for the optimal policy (OPT) at time t is

ΩOPT
t = −1

2
(tr(N11Zt) + tr(N22p2tp

T
2t)) (57)

where Zt = ztz
T
t . To achieve optimality the policy-maker sets p20 = 0 at time t = 0.14 At

14Noting from (54) that for the optimal policy we have xt = −N21zt −N22p2t, the optimal policy “from
a timeless perspective” proposed by Woodford (2003) replaces the initial condition for optimality p20 = 0
with Jx0 = −N21z0 − N22p20 where J is some 1 × m matrix. Typically in New Keynesian models the
particular choice of condition is π0 = 0 thus avoiding any once-and-for-all initial surprise inflation. This
initial condition applies only at t = 0 and only affects the deterministic component of policy and not the
stochastic, stabilization component.
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time t > 0 there exists a gain from reneging by resetting p2t = 0. It can be shown that

N11 < 0 and N22 < 0.15, so the incentive to renege exists at all points along the trajectory

of the optimal policy. This is the time-inconsistency problem.

6.2 The Dynamic Programming Discretionary Policy

To evaluate the discretionary (time-consistent) policy we rewrite the welfare loss Ωt given

by (41) as

Ωt =
1

2
[yTt Qyt + 2yTt Uwt + wT

t Rwt + βΩt+1] (58)

The dynamic programming solution then seeks a stationary solution of the form wt =

−Fzt in which Ωt is minimized at time t subject to (1) in the knowledge that a similar

procedure will be used to minimize Ωt+1 at time t+ 1.

Suppose that the policy-maker at time t expects a private-sector response from t + 1

onwards, determined by subsequent re-optimization, of the form

xt+τ = −Nt+1zt+τ , τ ≥ 1 (59)

The loss at time t for the ex ante optimal policy was from (57) found to be a quadratic

function of xt and p2t. We have seen that the inclusion of p2t was the source of the time

inconsistency in that case. We therefore seek a lower-order controller

wt = −F zt (60)

with the welfare loss in zt only. We then write Ωt+1 = 1
2z

T
t+1S

TCT
t+1 zt+1 in (58). This leads

to the following iterative process for Ft

wt = −Ftzt (61)

where

Ft = (Rt + λB
T
t S

TCT
t+1 Bt)

−1(U
T
t + βB

T
t S

TCT
t+1 At)

Rt = R+KT
t Q22Kt + U2TKt +KT

t U
2

Kt = −(A22 +Nt+1A12)
−1(Nt+1B

1 +B2)

Bt = B1 +A12Kt

U t = U1 +Q12Kt + JT
t U

2 + JT
t Q22Jt

J t = −(A22 +Nt+1A12)
−1(Nt+1A11 +A12)

15See Currie and Levine (1993), chapter 5.
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At = A11 +A12Jt

STCT
t = Qt − U tFt − F T

t U
T
+ F

T
t RtFt + β(At −BtFt)

TSTCT
t+1 (At −BtF t)

Qt = Q11 + JT
t Q21 +Q12Jt + JT

t Q22Jt

Nt = −Jt +KtFt

where B =

[
B1

B2

]
, U =

[
U1

U2

]
, A =

[
A11 A12

A21 A22

]
, and Q similarly are partitioned con-

formably with the predetermined and non-predetermined components of the state vector.

The sequence above describes an iterative process for Ft, Nt, and STCT
t starting with

some initial values for Nt and STCT
t . If the process converges to stationary values, F,N

and S say, then the time-consistent feedback rule is wt = −F zt with loss at time t given by

ΩTCT
t =

1

2
zTt S

TCT zt =
1

2
tr(STCTZt) (62)

6.3 Optimized Simple Rules

We now consider simple sub-optimal rules of the form

wt = Dyt = D

[
zt

xt

]
(63)

where D is constrained to be sparse in some specified way. Rule (63) can be quite general.

By augmenting the state vector in an appropriate way it can represent a PID (proportional-

integral-derivative)controller.

Substituting (63) into (41) gives

Ωt =
1

2

∞∑
i=0

βtyTt+iPt+iyt+i (64)

where P = Q + UD +DTUT +DTRD. The system under control (42), with wt given by

(63), has a rational expectations solution with xt = −Nzt where N = N(D). Hence

yTt P yt = zTt T zt (65)

where T = P11 −NTP21 − P12N +NTP22N , P is partitioned as for S in (55) onwards and

zt+1 = (G11 −G12N)zt (66)

where G = A+BD is partitioned as for P . Solving (66) we have

zt = (G11 −G12N)tz0 (67)
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Hence from (68), (65) and (67) we may write at time t

ΩSIM
t =

1

2
zTt V zt =

1

2
tr(V Zt) (68)

where Zt = ztz
T
t and V LY A satisfies the Lyapunov equation

V LY A = T +HTV LY AH (69)

where H = G11 − G12N . At time t = 0 the optimized simple rule is then found by

minimizing Ω0 given by (68) with respect to the non-zero elements of D given z0 using a

standard numerical technique. An important feature of the result is that unlike the previous

solution the optimal value of D, D∗ say, is not independent of z0. That is to say

D∗ = D∗(z0)

6.4 The Stochastic Case

Consider the stochastic generalization of (42)[
zt+1

xet+1,t

]
= A

[
zt

xt

]
+Bwt +

[
ut

0

]
(70)

where ut is an n × 1 vector of white noise disturbances independently distributed with

cov(ut) = Σ. Then, it can be shown that certainty equivalence applies to all the policy

rules apart from the simple rules (see Currie and Levine (1993)). The expected loss at time

t is as before with quadratic terms of the form zTt Xzt = tr(Xzt, Z
T
t ) replaced with

Et

(
tr

[
X

(
ztz

T
t +

∞∑
i=1

βtut+iu
T
t+i

)])
= tr

[
X

(
zTt zt +

λ

1− λ
Σ

)]
(71)

where Et is the expectations operator with expectations formed at time t.

Thus for the optimal policy with commitment (57) becomes in the stochastic case

ΩOPT
t = −1

2
tr

(
N11

(
Zt +

β

1− β
Σ

)
+N22p2tp

T
2t

)
(72)

For the time-consistent policy (62) becomes

ΩTCT
t = −1

2
tr

(
S

(
Zt +

β

1− β
Σ

))
(73)

and for the simple rule, generalizing (68)

ΩSIM
t = −1

2
tr

(
V LY A

(
Zt +

β

1− β
Σ

))
(74)

19



The optimized simple rule is found at time t = 0 by minimizing ΩSIM
0 given by (74).

Now we find that

D∗ = D∗
(
z0z

T
0 +

β

1− β
Σ

)
(75)

or, in other words, the optimized rule depends both on the initial displacement z0 and on

the covariance matrix of disturbances Σ.

A very important feature of optimized simple rules is that unlike their optimal com-

mitment or optimal discretionary counterparts they are not certainty equivalent. In fact

if the rule is designed at time t = 0 then D∗ = f∗
(
Z0 +

β
1−βΣ

)
and so depends on the

displacement z0 at time t = 0 and on the covariance matrix of innovations Σ = cov(ϵt).

From non-certainty equivalence it follows that if the simple rule were to be re-designed at

ant time t > 0, since the re-optimized D∗ will then depend on Zt the new rule will differ

from that at t = 0. This feature is true in models with or without rational forward-looking

behaviour and it implies that simple rules are time-inconsistent even in non-RE models.

7 Optimal Policy Under Imperfect Information

Here we assume that that there is a set of measurements as described above in section 3.

The following is a summary of the solution provided by Pearlman (1992), with some details

provided in Appendix C. It can be shown that the estimate for zt at time t, denoted by zt,t

can be expressed in terms of the innovations process zt − zt,t−1 as

zt,t = zt,t−1 + PDT (DPDT + V )−1(D(zt − zt,t−1) + vt) (76)

where D = M1
1 −M1

2 (A
1
22)

−1A1
21, M

1 = [M1
1 ,M

1
2 ], M

2 = [M2
1 ,M

2
2 ] partitioned conformably

with [zTt , x
T
t ]

T , and P is the solution of the Riccati equation describing the Kalman Filter

P = APAT −APDT (DPDT + V )−1DPAT +Σ (77)

where A = A1
11−A1

12(A
1
22)

−1A1
21. One can also show that zt− zt,t and zt,t are orthogonal in

expectations. Note that this Riccati equation is independent of policy. We may then write

the expected utility as

1

2
Et

[ ∞∑
i=0

βt(yTt+τ,t+τQyt+τ,t+τ + 2yTt+τ,t+τUwt+τ + wT
t+τRwt+τ

+ (yt+τ − yt+τ,t+τ )
TQ(yt+τ − yt+τ,t+τ ))

]
(78)

where we note that wt+τ is dependent only on current and past yt+s,t+s. This is minimized

subject to the dynamics[
zt+1,t+1

Etxt+1,t+1

]
= (A1 +A2)

[
zt,t

xt,t

]
+Bwt +

[
zt+1,t+1 − zt+1,t

0

]
(79)
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which represents the expected dynamics of the system (where we note by the chain rule

that Etxt+1,t+1 , Et[Et+1xt+1] = Etxt+1. Note that cov(zt+1,t+1−zt+1,t) = PDT (DPDT +

V )−1DP and cov(zt+1 − zt+1,t+1) = P − PDT (DPDT + V )−1DP , P̄ .

Taking time-t expectations of the equation involving Etxt+1 and subtracting from the

original yields:

0 = A1
12(zt − zt,t) +A1

22(xt − xt,t) (80)

Furthermore, as in Pearlman (1992) we can show that certainty equivalence holds for both

the fully optimal and the time consistent solution, it is straightforward to show that ex-

pected welfare for each of the regimes is given by

W J =zT0,0S
Jz0,0 +

λ

1− λ
tr
(
SJPDT (DPDT + V )−1DP

)
+

1

1− λ
tr
(
Q11 −Q12(A

1
22)

−1A1
21 − (A1

21)
T (A1

22)
−TQ21 + (A1

21)
T (A1

22)
−TQ22(A

1
22)

−1A1
21

)
P̄

(81)

where J =OPT, TCT, SIM; the second term is the expected value of the first three terms

of (78) under each of the rules, and the final term is independent of the policy rule, and is

the expected value of the final term of (78), utilising (80). Also note that from the perfect

information case in the previous subsection:

SOPT = N11 ≡ S11 − S12S
−1
22 S21 (82)

• Sij are the partitions of S, the Ricatti matrix used to calculate the welfare loss under

optimal policy with commitment.

• STCT is used to calculate the welfare loss in the time consistent solution algorithm.

• SSIM = V LY A is calculated from the Lyapunov equation used to calculate the welfare

under the optimized simple rule.

In the special case of perfect information, M1 = I, M2 = vt = V so that D = E = I.

It follows that P̄ = 0 and the last term in (81) disappears. Moreover P = Σ, z0,0 = z0

and (81) reduces to the welfare loss expressions obtained previously. Thus the effect of

imperfect information is to introduce a new term into the welfare loss that depends only on

the model’s transmission of policy but is independent of that policy and to modify the first

policy-dependent term by an effect that depends on the solution P to the Ricatti equation

associated with the Kalman Filter.

8 Optimal Monetary Policy in the NK Model: Results

This section sets out numerical results for optimal policy under commitment, optimal dis-

cretionary (or time consistent) policy and for a optimized simple Taylor rule. The model is
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the estimated form of the best-fitting one, namely model H. For the first set of results we

ignore ZLB considerations. The questions we pose are first, what are the welfare costs as-

sociated with the private sector possesses only imperfect information of the state variables;

second, what are the implications of imperfect information for the gains from commitment

and third, how does imperfect information affect the form of optimized Taylor rules.

This section addresses all these questions. We examine two imperfect information sets.

Imperfect Information Set I: This consists of the current and past values of output,

inflation and the interest rate In this scenario the private sector must infer the shocks from

its observations.

Imperfect Information Set II: As for I but output and inflation are only observed with

a lag, but the current interest rate is observed.

We considered simple inflation targeting rules that respond only to inflation.16 The

corresponding forms of the rules for the two information sets are

rt = ρrrt−1 + θππt (83)

for perfect information and information set I, and either

rt = ρrrt−1 + θπEtπt (Form A) (84)

or

rt = ρrrt−1 + θππt−1 (Form B) (85)

for information set II.

With this choice of Taylor rule the case where ρr = 1 is of particular interest as this

then corresponds to a price-level rule. There has been a recent interest in the case for price-

level rather than inflation stability. Gaspar et al. (2010) provide an excellent review of this

literature. The basic difference between the two regimes in that under an inflation targeting

mark-up shock leads to a commitment to use the interest rate to accommodate an increase

in the inflation rate falling back to its steady state. By contrast a price-level rule commits

to a inflation rate below its steady state after the same initial rise. Under inflation targeting

one lets bygones be bygones allowing the price level to drift to a permanently different price-

level path whereas price-level targeting restores the price level to its steady state path. The

16We also considered the following simple rules that responding to both inflation and output:

rt = ρrrt−1 + θππt + θyyt

for perfect information and information set I, and either

rt = ρrrt−1 + θπEtπt + θyEtyt (Form A)

rt = ρrrt−1 + θππt−1 + θyyt−1 (Form B)

for information set II. However the results were very similar with a very small weight on output.
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latter can lower inflation variance and be welfare enhancing because forward-looking price-

setters anticipates that a current increase in the general price level will be undone giving

them an incentive to moderate the current adjustment of its own price. In our results

we will see if price-level targeting is indeed welfare optimal across different information

assumptions.

8.1 Optimal Policy without Zero Lower Bound Considerations

Results are presented for a loss function that is formally a quadratic approximation about

the steady state of the Lagrangian, and which represents the true approximation about the

fully optimal solution. This welfare-based loss function has been obtained numerically.

A permanent drop in consumption of 0.1464% produces a welfare loss per period of 100.

So from Table 3 we can see (a) that the gains from commitment are very small under any

information set; (b) that imperfect information in the form of only observing a subset of

current state variables (information set I) imposes only a tiny welfare loss, whereas if only

lagged output and inflation are observed, the losses are significant, and are of the order of

0.11% consumption equivalent.

Simple rules are able to quite well replicate the welfare losses under the fully optimal

solution, albeit with Simple Rule A requiring a large weight θπ = 16 on inflation, and ρr =

1.0 on lagged interest rates (virtually the same for all information sets). This derivative rule

in inflation is equivalent to a price level rule. For Simple Rule B, with lagged information

on inflation, the welfare loss is similar but achieved with weights θπ = 2.26 and ρr = 0.6,

so the price level rule does not apply in this case and the II with only lagged observations

of output and inflation has important implications for the form of the optimized rule.

Information Information Set Optimal Time Consistent Simple Rule A Simple Rule B

Perfect Full state vector 20.06 21.22 21.39 n. a.

Imperfect I It = [yt, πt, rt] 20.45 21.62 20.46 n. a.

Imperfect II It = [yt−1, πt−1, rt] 95.61 97.6 95.62 95.85

Table 3: Welfare Costs per period of Imperfect Information without ZLB Considerations

Information Information Set Simple Rule A Simple Rule B
[ρr, θπ] [ρr, θπ]

Perfect Full state vector [1, 16] n. a.

Imperfect I It = [yt, πt, rt] [1,16] n. a.

Imperfect II It = [yt−1, πt−1, rt] [1, 16.5] [0.6, 2.26]

Table 4: Optimized Coefficients in Simple Rules without ZLB Considerations
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Information Information Set Optimal Time Cons Simple Rule A Simple Rule B

Perfect Full state vector 1.31 2.39 1.48 n. a.

Imperfect I It = [yt, πt, rt] 1.32 2.32 1.35 n. a.

Imperfect II It = [yt−1, πt−1, rt] 2.42 4.16 2.47 2.34

Table 5: Interest Rate Variances

However Table 5 indicates the aggressive nature of these rules leads to high interest rate

variances resulting in a ZLB problem for all the rules and information sets. This now needs

to be addressed.

8.2 Imposing an Interest Rate Zero Lower Bound Constraint

In the absence of a lower bound constraint on the nominal interest rate the policymaker’s

optimization problem is to minimize Ω0 given by (41) subject to (43) and (39) and given

z0. If the variances of shocks are sufficiently large, this will lead to a large nominal interest

rate variability and the possibility of the nominal interest rate becoming negative.

To rule out this possibility but remain within the tractable LQ framework, we follow

Woodford (2003), chapter 6, and modify our interest-rate rules to approximately impose

an interest rate ZLB so that this event hardly ever occurs. Our quadratic approximation

to the single-period loss function can be written as Lt = y′tQyt where y′t = [z′t, x
′
t]
′ and Q is

a symmetric matrix. As in Woodford (2003), chapter 6, the ZLB constraint is implemented

by modifying the single period welfare loss to Lt + wrr
2
t .

Then following Levine et al. (2008b), the policymaker’s optimization problem is to

choose wr and the unconditional distribution for Rt (characterized by the steady state

variance) shifted to the right about a new non-zero steady state inflation rate and a higher

nominal interest rate, such that the probability, p, of the interest rate hitting the lower

bound is very low. This is implemented by calibrating the weight wr for each of our

policy rules so that z0(p)σr < Rn where z0(p) is the critical value of a standard normally

distributed variable Z such that prob (Z ≤ z0) = p, R∗
n = (1 + π∗)R + π∗ is the steady

state nominal interest rate, R is the steady state real interest rate, σ2
r = var(Rn) is the

unconditional variance and π∗ is the new steady state inflation rate. Given σr the steady

state positive inflation rate that will ensure Rt ≥ 0 with probability 1− p is given by

π∗ = max

[
z0(p)σr −R

1 +R
× 100, 0

]
(86)

In our linear-quadratic framework we can write the intertemporal expected welfare loss

at time t = 0 as the sum of stochastic and deterministic components, Ω0 = Ω̃0 + Ω̄0. Note

that Ω̄0 incorporates in principle the new steady state values of all the variables; however the

NK Phillips curve being almost vertical, the main extra term comes from a contribution

from (π∗)2. By increasing wr we can lower σr thereby decreasing π∗ and reducing the
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deterministic component, but at the expense of increasing the stochastic component of

the welfare loss. By exploiting this trade-off, we then arrive at the optimal policy that,

in the vicinity of the steady state, imposes the ZLB constraint, rt ≥ 0 with probability

1− p. Figure 1 illustrates shows the solution to the problem for optimal policy and perfect

information. with p = 0.0025; ie., a probability of hitting the zero lower bound once every

400 quarters or 100 years.
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Figure 1: Imposition of ZLB for Optimal Policy and Perfect Information

Note that in our LQ framework, the zero interest rate bound is very occasionally hit.

Then interest rate is allowed to become negative, possibly using a scheme proposed by

Gesell (1934) and Keynes (1936). Our approach to the ZLB constraint (following Woodford
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(2003))17 in effect replaces it with a nominal interest rate variability constraint which

ensures the ZLB is hardly ever hit. By contrast the work of a number of authors including

Adam and Billi (2007), Coenen and Wieland (2003), Eggertsson and Woodford (2003) and

Eggertsson (2006) study optimal monetary policy with commitment in the face of a non-

linear constraint it ≥ 0 which allows for frequent episodes of liquidity traps in the form of

it = 0.

A problem with the procedure so far is that we shift the steady state to a new one

with a higher inflation, but we continue to approximate the loss function and the dynamics

about the original Ramsey steady state. We know from the work of Ascari and Ropele

(2007a) and Ascari and Ropele (2007b) that the dynamic properties of the linearized model

change significantly when the model is linearized about a non-zero inflation. This issue is

addressed analytically in Coibion et al. (2011), but in a very simple NK model. We now

propose a general solution and numerical procedure that can be used in any DSGE model.

1. Begin by defining a new parameter: p, the probability of hitting the ZLB, the weight

wr on the variance of the nominal net interest rate and a target steady state nominal

interest rate R̂.

2. Modify the single-period utility to Lt = Λt − 1
2wr(Rt − R̂)2.

3. In the first iteration let wr to be low to get through OPT, say wr = 0.001 and R̂ =
1
β − 1, the no-growth zero-inflation steady-state nominal interest rate corresponding

to the standard Ramsey problem with no ZLB considerations.

4. Perform the LQ approximation of the Ramsey optimization problem with modified

loss function Lt. For standard problems the steady state nominal net inflation rate

πRamsey = 0 and RRamsey = 1
β − 1.

5. Compute OPT or TCT or optimized simple rule SIM2 in as in the solution procedures

above.

6. Extract σr = σr(wr).

7. Extract the minimized conditional (in the vicinity of the steady state, i.e. z0 = 0 in

ACES) stochastic loss function Ω̃0(wr)

8. Compute r∗ = r∗(wr) defined by r∗(wr) = max
[
z0(p)σr −RRamsey × 100, 0

]
, where

in the first iteration RRamsey = 1
β − 1 as noted above. This ensures that the ZLB is

reached with a low probability p.

9. If r∗ < 0, the ZLB constraint is not binding; if r∗ > 0 it is. Proceed in either case.

17We generalize the treatment of Woodford however by allowing the steady-state inflation rate to rise.
Our policy prescription has recently been described as a “dual mandate” in which a central bank committed
to a long-run inflation objective sufficiently high to avoid the ZLB constraint as well as a Taylor-type policy
stabilization rule about such a rate - see Blanchard et al. (2010) and Gavin and Keen (2011).
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10. Define π∗ = πRamsey + r∗.

11. Compute the steady state Ω̄0(π
∗) at the steady state of the model with a shifted new

inflation rate π∗. Then compute ∆Ω̄0(r
∗(wr)) ≡ Ω̄0(π

∗)− Ω̄0(π
Ramsey)

12. Compute the actual total stochastic plus deterministic loss function that hits the ZLB

with a low probability p

Ω0(wr) = Ω̃actual
0 (wr) + ∆Ω̄0(r

∗(wr)) (87)

13. A good approximation for Ω̃0(wr)
actual is Ω̃0(wr)

actual ≃ Ω̃0(wr) − 1
2wrσ

2
r provided

the welfare loss is multiplied by 1− β.

14. Finally minimize Ω0(wr) with respect to wr. This imposes the ZLB constraint as in

Figure 1.

15. This is what we have currently in analysis. What now changes is to reset R̂ =
1
β − 1 + απ∗ where α ∈ (0, 1] is a relaxation parameter to experiment with, i.e.,

(R̂)new = (R̂)old + απ∗, wnew
r = argminΩ0(wr) and return to the beginning. Iterate

until π∗(wr) = 0 and wr is unchanged. In our experience with some appropriate

choice of α this algorithm converges.

Information Information Set Optimal Time Consis Sim Rule A Sim Rule B

Perfect (Wel Loss) Full state vector 51.3 (0.08) 3652 (5.34) 106.4 (0.16) n. a.

Perfect (Weight wr) Full state vector 2.2 0.75 5.5 n. a.

Imperf I (Wel Loss) It = [yt, πt, rt] 52.9 (0.08) 3873 (5.67) 101.4 (0.15) n. a.

Imperf I ((Weight wr) It = [yt, πt, rt] 2.3 0.7 5.0 n. a.

Imperf II (Wel Loss) It = [yt−1, πt−1, rt] 166.9 (0.24) 2761 (4.04) 275.2 (0.40) 188 (0.28)

Imperf II ((Weight wr) It = [yt−1, πt−1, rt] 3.8 1.0 8.0 5.0

Table 6: Welfare Costs per period of Imperfect Information with ZLB Considerations.
Consumption Equivalent Losses (%) in brackets. Prob of hitting ZLB=0.0025.

Information Information Set Simple Rule A Simple Rule B
[ρr, θπ] [ρr, θπ]

Perfect Full state vector [1, 0.45] n. a.

Imperfect I It = [yt, πt, rt] [1, 0.44] n. a.

Imperfect II It = [yt−1, πt−1, rt] [1, 0.3] [1, 0.22]

Table 7: Optimized Coefficients in Simple Rules with ZLB Considerations

Using this algorithm we obtain the following results. Introducing the ZLB constraint

drastically changes the relative welfare performance of commitment, simple rules and the
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Figure 2: Imposition of ZLB for Discretion and Perfect Information
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withdrawal of information. Now there are substantial gains from commitment of 4 − 5%

consumption equivalent. Simple rules are less able to mimic their optimal counterpart and

the loss of information can impose a welfare loss of up to 0.24% consumption equivalent.

The form of the optimized simple rules now becomes a price level rule for all cases high-

lighting an argument in their favour emphasized by Gaspar et al. (2010). The reason why

the discretionary policy performs so badly with a ZLB constraint can be seen from Figure 2

that implements the first iteration of our algorithm as in Figure 1 for the PI case. Generally

speaking it is now well understood that under discretion the policymaker lacks the leverage

over private sector behaviour that is possible under commitment from say temporary loos-

ening (or tightening) of monetary policy with promises to reverse this in the future. This in

turn greatly inhibits the ability to reduce the unconditional variance of the nominal interest

rate when it is penalized by an increasing size of the weight wr. Consequently to achieve

a low probability of hitting the ZLB one needs a larger shift of the nominal interest rate

distribution to the right. Whereas under commitment π∗ ≃ 0.15 per quarter corresponding

to an annual inflation rate of only 0.6%, under discretion this rises to π∗ ≃ 2.0 or around

8% per year. Our ZLB constraint then results in a long-run inflationary bias in addition

to the familiar stabilization bias highlighted by Currie and Levine (1993), Clarida et al.

(1999) and others.

These results of imposing the ZLB are fairly uniform across all three information sets.

What then are the particular implications of imperfect information then? There are two

results to highlight. First under commitment with both optimal policy and optimized

rules, the welfare consequences of limiting information to lagged output and inflation is

now more significant than before without ZLB considerations. However this is not true

for discretion. The withdrawal of information now actually improves the welfare outcome

by some 1.63% consumption equivalent. The reason for this is that the policymaker now

has less opportunity to react opportunistically to current shocks which lowers the variance

of the nominal interest rate and makes it easier to satisfy the ZLB constraint. This is a

kind of ‘tying one’s hands’ result familiar in other contexts of macroeconomic policy such

as exchange-rate policy.

9 Conclusions

This is the first paper to examine optimal policy in an estimated DSGE NK model where

informational consistency is applied at both the estimation and policy stages. Our main

results can be summarized as follows. First, a result common to all information sets is

that only with a ZLB constraint do we see very substantial gains from commitment with

optimized rules taking the form of a price level rule in all cases. Second, under commitment

information assumptions have significant implications for welfare only when imperfect in-

formation is limited to lagged output and inflation. Third, under discretion we observe a

‘tying one’s hands’ effect of such a limitation of information.
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There are a number of areas for future research. Our model is very basic with low

costs of business cycle fluctuations in the absence of ZLB considerations. If anything we

underestimate the costs of imperfect information. It seems therefore worthwhile to revisit

the issues raised in the context of a richer DSGE model that includes capital, sticky wages,

search-match labour market frictions and financial friction is now the subject of current

research. A second avenue for research extend the work to allow the policymaker to have

more information than the private sector. This satisfies the ICP and would allow the proper

examination of the benefits or otherwise of transparency. Finally we assume rational (model

consistent) expectations. It would be of interest to combine some aspects of learning (for

example about the policy rule) alongside model consistent expectations with imperfect as

in Ellison and Pearlman (2008).
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A Linearization of RE Model

The log-linearization18 of the model about the non-stochastic steady state zero-growth19, zero-

inflation is given by

yt = cyct + (1− cy)gt where cy =
C

Y
(A.1)

EtmuC
t+1 = muC

t − (rt − Etπt+1) (A.2)

πt =
β

1 + βγ
Etπt+1 +

γ

1 + βγ
πt−1 +

(1− βξ)(1− ξ)

(1 + βγ)ξ
(mct +mst) (A.3)

where marginal utilities, muC
t , muL

t , and marginal costs, mct, and output, yt are defined by

muC
t =

(1− ϱ)(1− σ)− 1

1− hC
(ct − hCct−1)−

ϱ(1− σ)L

1− L
lt (A.4)

muL
t =

1

1− hC
(ct − hCct−1) +

L

1− L
lt +muC

t (A.5)

wt − pt = muL
t −muC

t (A.6)

mct = wt − pt − at (A.7)

yt = at + lt (A.8)

Equations (A.1) and (A.2) constitute the micro-founded ‘IS Curve’ and demand side for the model,

given the monetary instrument. According to (A.2) solved forward in time, the marginal utility of

consumption is the sum of all future expected real interest rates. (A.3) is the ‘NK Philips Curve‘, the

supply side of our model. In the absence of indexing it says that the inflation rate is the discounted

sum of all future expected marginal costs. Note that price dispersion, ∆t, disappears up to a first

order approximation and therefore does not enter the linear dynamics. Finally, shock processes and

the Taylor rule are given by

gt+1 = ρggt + ϵg,t+1

at+1 = ρaat + ϵa,t+1

mspert+1 = ρmsmspert + ϵmsper,t+1

mst = mspert + ϵmstra,t

πtar,t+1 = ρaπtar,t + ϵtar,t+1

rt = ρrrt−1 + (1− ρr)θ(Etπt+1 − ρtarπtar,t) + ϵe,t

ϵe,t, ϵa,t, ϵg,t, ϵmsper,t, ϵmstra,t and ϵtar,t are i.i.d. with mean zero and variances σ2
ϵe , σ

2
ϵa , σ

2
ϵg , σ

2
ϵmsper

,

σ2
ϵmstra

and σ2
ϵtra respectively.

18Lower case variables are defined as xt = log Xt
X

. rt and πt are log-deviations of gross rates. The validity
of this log-linear procedure for general information sets is discussed in the next section.

19With growth we simply replace β and hC with βg ≡ β(1 + g)(1−ϱ)(1−σ)−1 and hCg = hC
1+g

.
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B Priors and Posterior Estimates

Parameter Notation Prior distribution
Density Mean

Risk aversion σ Normal 1.50 0.375
Price indexation γ Beta 0.50 0.15
Calvo prices ξ Beta 0.50 0.10
Consumption habit formation hC Beta 0.70 0.10
Preference parameter ϱ Beta 0.50 0.20

Adaptive expectations

Error adjustment - Ef,tq̄
a
t+1 µ1 Beta 0.50 0.20

Error adjustment - Eh,tu
a
c,t+1 µ2 Beta 0.50 0.20

Error adjustment - Ea
h,t[πt+1] µ3 Beta 0.50 0.20

Proportion of rational households λh Beta 0.50 0.20
Proportion of rational firms λf Beta 0.50 0.20

Interest rate rule

Inflation θπ Normal 1.50 0.25
Output θy Normal 0.125 0.05
Interest rate smoothing ρr Beta 0.80 0.10

AR(1) coefficient

Technology ρa Beta 0.85 0.10
Government spending ρg Beta 0.85 0.10
Price mark-up ρms Beta 0.50 0.20
Inflation target ρtar Beta 0.85 0.10

Standard deviation of AR(1) innovations

Technology sd(ϵa) Inv. gamma 0.40 2.00
Government spending sd(ϵg) Inv. gamma 1.50 2.00
Price mark-up sd(ϵms) Inv. gamma 0.10 2.00
Inflation target sd(ϵtar) Inv. gamma 0.10 10.00

Standard deviation of I.I.D. shocks/mearsument errors

Mark-up process sd(ϵm) Inv. gamma 0.10 2.00
Monetary policy sd(ϵe) Inv. gamma 0.10 2.00
Observation error (inflation) sd(ϵπ) Inv. gamma 0.10 2.00
Observation error (output) sd(ϵy) Inv. gamma 0.10 2.00

Table 8: Prior Distributions
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C Optimal Policy Under Imperfect Information: Further

Details

Pearlman (1992)20 shows that optimal policy is certainty equivalent in the sense that all the rules

under imperfect information correspond to those under perfect information, but with zt,t and xt,t

replacing zt, xt. In particular, for the fully optimal rule p2t then depends only on past values

{zs,s, xs,s : s < t}, so that p2t = p2t,t = p2t,t−1. (76) is then derived as follows:

xt,t +Nzt,t +Npp2t = 0 xt − xt,t = A−1
22 A21(zt − zt,t) (C.1)

where Np = 0 for TCT and SIM, and N is dependent on which rule is in place, and the second

equation was derived earlier. After taking expectations of each of these at t− 1, it then follows that

we can write

mt −mt,t−1 = D(zt − zt,t−1) + vt + (E −D)(zt,t − zt,t−1) (C.2)

using the previous definitions of D and E. Now assume that

zt,t − zt,t−1 = J1(D(zt − zt,t−1) + vt) (C.3)

which will be verified shortly. It then follows that

mt −mt,t−1 = (I + (E −D)J1)(D(zt − zt,t−1) + vt) (C.4)

and hence the updated value zt,t using the measurement mt is given by

zt,t − zt,t−1 = PDT (DPDT + V )−1(I + (E −D)J1)
−1(mt −mt,t−1)

= PDT (DPDT + V )−1(D(zt − zt,t−1) + vt) (C.5)

Finally Pearlman (1992) shows that E[(zt − zt,t)zs,s] = 0, s ≤ t. This enables us to rewrite the

welfare loss in the form of (78), and to obtain its value in (81) using (79).

20This paper conducts the analysis in continuous time, but it is straightforward to translate the results
and proofs to discrete time.
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