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Abstract

Most DSGE models assume full information and model-consistent expectations.

This paper relaxes both these assumptions in the context of the stochastic growth

model with incomplete markets and heterogeneous agents. Households do not have

direct knowledge of the structure of economy or the values of aggregate quanti-

ties; instead they form expectations by learning from the prices in their market-

consistent information sets. The economy converges quickly to an equilibrium

which is similar to the equilibrium with model-consistent expectations and market-

consistent information. Learning does not introduce strong dynamics at the aggre-

gate level, though more interesting things happen at the household level. At least

in the context of this model, assumptions about information seem important for

aggregates; assumptions about the ability to form model-consistent expectations

less so.
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1 Introduction

Most dynamic stochastic general equilibrium models assume agents can form model-

consistent expectations and have full information. The learning literature relaxes the first

assumption while typically retaining the second. The imperfect information literature

relaxes the second while retaining the first. This paper relaxes both of these assumptions,

in the context of the stochastic growth model with incomplete markets and heterogeneous

agents.

Households are assumed to have "market-consistent" information sets (Graham and

Wright, 2010). Incomplete markets will then lead to incomplete information, and with

incomplete markets as in Krusell and Smith (1998) households’information sets will con-

sist of the wage and the return to capital. To implement consumption, households need

to forecast these prices and, since it is assumed they cannot form model-consistent ex-

pectations, they do so by estimating a vector autoregression (VAR) in the prices. Thus

households in this model have no direct knowledge of the structure of the macroeconomy

or the values of aggregate quantities. The model avoids the unrealistic cognitive demands

of model-consistent expectations (which are even less realistic in models of heterogeneous

information such as Nimark, 2007 or Graham and Wright, 2010 in which agents esti-

mating infinite hierarchies of expectations), and the strong informational requirements of

full information models. Conditional on their (in general non-model-consistent) beliefs,

households are modelled as rational.1

Given households’VAR in prices (their "perceived law of motion", PLM), the paper

derives a state space representation of the actual law of motion (ALM) in which the state

is shown to expand to the full history of the economy2. Since households estimate a

finite order VAR, any resulting equilibrium must therefore be a restricted perceptions

equilibrium (RPE, in the sense of Evans and Honkapohja, 2001) and conditions are given

for its stability and learnability.

The properties of the model are then studied numerically. In the stochastic steady

state of the model, structural heterogeneity across agents creates heterogeneity of beliefs.

To understand the impact of learning, a careful consideration of the steady state distri-

bution of beliefs is necessary and this mechanism is clarified using a simple univariate

example.

The main results are as follows

1. The economy converges to the restricted perceptions equilibrium from any stable

prior. Under ordinary least squares learning, a standard theorem can be used to

1This is in contrast to the "Euler equation learning" approach in which agents have finite forecast
horizons. For a discussion see Preston (2005), Evans et al, (2011) or Graham (2011).

2There is a close link with the "infinite hierarchy of expectations" (Townsend, 1983) that characterizes
models with heterogeneous information sets.
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show that there is
√
t convergence. Under constant gain learning the speed of

convergence depends on the chosen gain.

2. Constant gain learning only has small effects on the aggregate economy, changing

the volatility of aggregates by at most a few percent from the model-consistent

expectations equilibrium (MCEE). Learning can amplify or mute the effect of

shocks, depending on the gain.

3. Household - level quantities are much more volatile than at the MCEE. Specifically,

the volatility of household consumption growth is much closer to that found in the

data.

4. If an intercept is included in the learning rule, the aggregate economy becomes so

volatile that it is only stable with very small gains.

The first result is in contrast to existing studies (for example Carceles-Poveda and

Giannitsarou, 2007) which show convergence is slow in a full information representative

agent model. Graham (2011) shows that fast convergence is a consequence of modelling

households as individually rational as opposed to the "Euler equation learning" approach

(Honkapohja et al, 2011) of bounded individual rationality. The present paper shows

that such fast convergence also occurs with restricted information sets.

The speed of convergence is important for reasons of informational plausibility. To

avoid arbitrary dynamics arising along the convergence path, models with learning are

typically initialized with learning rules that have already converged. If convergence is

slow this becomes a very strong assumption, endowing agents with the knowledge they

are supposed to be learning. If convergence is fast this assumption becomes much more

plausible.

The second result goes against the simple intuition drawn from representative agent

models that constant gain learning, by increasing the volatility of expectations, increases

the volatility of the economy. The economy with learning is characterized by a (stochas-

tic) steady state distribution of beliefs across households. The impact of this distribution

of beliefs on aggregates depends on its shape (in general it will not be symmetrical or

centred on the restricted perceptions equilibrium) and the non-linearity of consumption

to beliefs. The overall effect on the macroeconomy is modest, with a reduction in the

impact effect of shocks but an increase in persistence combining to give an increase in

the volatility of aggregates of at most a few percent over the equilibrium with model-

consistent expectations. Higher gains can result in lower volatilities. In practice, given

the data typically available, it would be diffi cult to distinguish the aggregate economy

with learning from one with model-consistent expectations.

The combination of the first two results allows a model-consistent expectations equi-

librium to be interpreted as the outcome of a learning process that has already converged
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(Grandmont, 1998, makes this point). However, the equilibrium that the economy con-

verges to is that with market-consistent information, described in Graham and Wright

(2010), which differs in significant ways from the equilibrium with full information. At

least in the context of this model, assumptions on information seem important, assump-

tions on the ability of households to form model-consistent expectations less so.

This is particularly striking given that households are making decision under very

limited information. The rules they use to forecast their income are misspecified in three

ways: they do not know the true law of motion for the economy; they cannot observe

the state variables and whereas the true law of motion will be infinite-dimensional they

are restricted to using a finite number of lags. Yet still the economy converges quickly

to an equilibrium that would in practice be hard to distinguish from one in which agents

form model-consistent expectations.

From a modelling point of view, the approach of this paper has a clear advantage.

Papers in the learning literature typically makes assumptions, often tacitly about what

information agents have and how they use it. Some papers assume that agents use

one information set when choosing how much to consume and another when they form

expectations3. Some papers assume that agents only use a subset of the information

at their disposal to form expectations4. Many papers model a representative agent (for

example, Carceles-Poveda and Giannitsarou, 2007 or Milani, 2007, 2011), but need to

then assume that the agent does not realize that solving for their own consumption is the

same as solving for the law of motion of the economy as a whole5. Other examples can

be found throughout the learning literature. Such assumptions may be perfectly valid,

but they make it hard to identify the extent to which results are due to these specific

informational assumptions and the extent to which they are due to the central issue of

the learning literature - the inability of agents to form model-specific expectations. This

paper avoids such assumptions by on the one hand modelling heterogeneity explicitly and

on the other by simply assuming that households know nothing about the macroeconomy

apart from their market-consistent information sets.

Excellent overviews of the literature on imperfect information and learning can be

found in Hellwig (2006) and Carceles-Poveda and Giannitsarou (2007) respectively. Al-

though most learning models consider a representative agent, there is a growing literature

on learning with heterogeneity. The bulk of this literature, for example Giannitsarou

(2003), Branch and McGough (2004) or Branch and Evans (2006) address the problem

3 Fout and Francis (2011) study this issue and coin the term "information-consistent learning". An-
other example is Eusepi and Preston (2011) who assume that agents observe the innovation to technology
for the purposes of calculating their consumption but do not use it in their learning rule.

4An example of this is Evans et al (2009) which assumes agents forecast interest rates using information
only on lagged interest rates.

5Justifying this approach by assuming an economy with many identical agents who do not know
they are identical again involves an artificial restriction - that agents do not run a simple regression of
individual quantities on aggregates which would immediately reveal a perfect correlation.
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of heterogeneity in learning rules or initial conditions. An exception is Honkapohja and

Mitra (2006) which addresses a general model with both learning and structural hetero-

geneity, which under full information, would nest the model in this paper. However

under imperfect information this is not the case and this paper extends the techniques

introduced by Honkapohja and Mitra (2006) to an economy with incomplete and hetero-

geneous information sets.

The remainder of this paper is structured as follows. Section 2 presents the model.

Section 3 states the PLM, derives the ALM and gives stability conditions. Section 4

investigates the convergence properties of the model under ordinary least squares learning

and section 5 studies the economy under constant gain learning. Section 6 concludes.

Derivations and proofs are in the Appendix.

2 The model

This section presents a model of the type that is becoming standard in the dynamic gen-

eral equilibrium literature6. There are a large number of households and a large number of

firms, divided across S islands. There are shocks to aggregate and island-specific labour

productivity. Markets are incomplete in the sense that there are no swaps, only markets

for capital and labour. Since the model is standard, only the linearised constraints and

optimality conditions are presented here7. More workings are in Appendix A.1.

2.1 Households

A typical household on island s consumes (cst) and rents capital (k
s
t ) and labour (h

s
t)

to firms. Household labour on each island has idiosyncratic productivity (zst ) whereas

capital is homogenous, so households earn the aggregate gross return (rkt) on capital

but an idiosyncratic wage (wst ) on their labour. Households on different islands are

unconditionally identical.

The Euler equation for a typical household s is

Ẽs
t∆c

s
t+1 = σẼs

t rt+1 (1)

where rt is the net return to capital (related to the gross return by rkt = rt+(1− δ)) and
σ the coeffi cient of relative risk aversion. The expectations operator for household s, with

a tilde since in the general case individuals will have non-model-consistent expectations,

6Examples of papers which use similar models include Krusell and Smith (1998), Graham and Wright
(2010) and Lorenzoni (2010).

7The linear model presented here can be thought of as a first-order approximation to a non-linear
model (for details of the linearisation see Graham and Wright, 2010). However since the focus of this
paper is on learning and as is conventional only linear learning rules are investigated, it may be better
simply to think of the model as linear per se.
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is defined as the expectation given the household’s information set Ωs
t , i.e. for some

variable at Ẽs
t at = Ẽat|Ωs

t .

The first-order condition for labour is

nst =
1− n
n

η (wst − cst) (2)

where n is steady-state labour and 1
η
the intertemporal elasticity of labour supply. House-

hold capital evolves according to

kst+1 = (1− δ) kst + δxst (3)

where δ is the rate of depreciation and x investment and the budget constraint is

c

y
cst +

(
1− c

y

)
xst = α (wst + nst) + (1− α) (rkt + kst ) (4)

where α is the labour share and c
y
is the steady-state consumption share of output. The

left-hand side shows spending on consumption and investment weighted by their steady-

state shares of output. The right-hand side shows income from renting labour and capital

to firms weighted by their factor shares.

2.2 Firms

A typical firm on island s faces a production function

yst = α (at + zst ) + αnst + (1− α) jst (5)

where at is an aggregate productivity shock, zst island-specific productivity and j
s
t is the

capital rented by the firm: in general, jst 6= kst , since capital will flow to more productive

islands. The firm chooses capital and labour to satisfy first-order conditions

rkt = (1− α)
k

y
(yst − jst ) (6)

wst = yst − nst (7)

2.3 Aggregates

Aggregate quantities are sums over household or firm quantities, calculated as quantities

per household. For example aggregate consumption is given by

ct =
1

S

S∑
s=1

cst . (8)
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2.4 Markets

Markets are incomplete in the sense that the only markets are those for output, labour

and capital - there are no swaps which allow idiosyncratic risk to be transferred between

households.

The labour market is segmented in that firms on island s only rent labour from

households on island s, and the wage on island s, wst , adjusts to set labour supply (2)

equal to labour demand (7). Appendix A.1.3 shows the relation between the idiosyncratic

wage and the aggregate wage is:

wst = wt + zst (9)

Recall that in the general case no household will be able to observe wt or zst .

In contrast, capital is homogenous and tradeable between islands, so flows to islands

with more productive labour. The gross return, rt, adjusts to make the aggregate

demand for capital from firms consistent with each household’s Euler equation (1) and

the aggregate budget constraint.

Market clearing prices (in the general case no household in the model could calculate

these) are given by

wt = λwkkt + λwaat + λwcct (10)

rt = λrkkt + λraat + λrcct (11)

where expressions for the coeffi cients are given in Appendix A.2. Note in the case of

fixed labour supply (η →∞), λwc = λrc = 0.

2.5 Shocks

For both the aggregate and idiosyncratic productivity shocks, assume autoregressive

processes

at = φaat−1 + εt (12)

zst = φzz
s
t−1 + εst (13)

where εt and εst are iid mean-zero errors, and Eε
2
t = σ2

a; E (εst)
2 = σ2

z. The innovation

to the idiosyncratic process satisfies an adding up constraint,
S∑
s=1

εst = 0 which implies

S∑
s=1

zst = 0. (14)
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2.6 Information

Definition 1. (Full information) Full information for a typical household on island s,
denoted by an information set Ωs∗

t , is knowledge of the aggregate states and the relevant

idiosyncratic states

Ωs∗
t = [kt, at, k

s
t , z

s
t ]

Graham and Wright (2010) argues that in a decentralized equilibrium the states will

not in general be known by agents, so the assumption of full information is a strong one.

Instead that paper proposes the following definition of an information set consistent with

a decentralized equilibrium, reproduced here:

Definition 2. (Market-consistent information) Households’ information sets con-
sists of the prices in the markets in which they participate.

With only capital and labour markets the market-consistent information set of a

household on island s at time t is8

Ωs
t =

[
{ri}ti=0 , {wsi }

t
i=0

]
Define the innovation to this information set as

ist =
[
rt wst

]′
(15)

such that the information set evolves according to Ωs
t+1 = Ωs

t ∪ ist+1.

2.7 Equilibrium

Definition 3. Equilibrium with market-consistent information: a competitive

equilibrium in which the law of motion of the economy is consistent with each agent solving

a decentralized optimisation problem. A sequence of plans for allocations of households{
cst , n

s
t , k

s
t+1

}s=1:S

t=1:∞ and prices {rt, w
s
t}
s=1:S
t=1:∞

1. Given prices and informational restrictions, the allocations solve the utility maxi-

mization problem for each household

2. {rt, wst}
s=1:S
t=1:∞ are the marginal products of aggregate capital and island-specific labour.

3. All markets clear
8Households also have knowledge of the history of their own decisions, {csi}

t
i=0 , {nsi}

t−1
i=0, {ksi }

t
i=0

however, since each of these histories embodies the household’s own responses to the evolution of Ωst , it
contains no information not already in Ωst .
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2.8 Benchmark cases

The above model nests four familiar cases. With complete markets, the market-consistent

information set is invertible (in the sense of Baxter et al, 2011) and full information is

revealed (the result of Radner, 1979). All idiosyncratic risk is diversified away and the

model is identical to the representative agent real business cycle model.

With incomplete markets and assumed full information, the path of the aggregate

economy is identical to the complete markets case. This is related to Krusell and Smith’s

(1998) result that an economy with incomplete markets can closely resemble one with

complete markets - the resemblance is exact in the model because it is linear. However

the economy differs markedly at a household level since household wealth follows a unit

root process.

With complete markets and learning, the model is the real business cycle model with

learning, though it differs from most standard treatments (e.g. Carceles-Poveda and

Giannitsarou) in that households are assumed to have infinite horizons (see Preston,

2005; Honkapohja et al, 2011; and Graham, 2011 for further discussion of this issue).

With market-consistent information and model-consistent expectations, the model is

that studied in Graham and Wright (2010). Since this represents the limit to which

a model with learning might converge, it is worth reviewing its properties. Market-

consistent information implies heterogeneity of information across households, so to form

model-consistent expectations households need to estimate an infinite hierarchy of expec-

tations. Numerically, this leads to the properties of the model looking quite different from

under full information, notably the sign of the impact response of aggregate consumption

to an aggregate technology shock reverses. This is discussed further in section 3.6.

2.9 Optimal consumption

To solve for optimal consumption, substitute the budget constraint (4) into the capital

evolution equation (3), solve forward and use the transversality condition on capital to

give an expression relating the path of future consumption to current capital, current

prices and expected future prices

γ2Ẽ
s
t

∞∑
j=0

βjcst+j = γ1k
s
t + γ3w

s
t + γ5rt + Ẽs

t

∞∑
j=1

βj
(
γ3w

s
t+j + γ5rt+j

)
(16)

where the constants are defined (along with a full derivation) in Appendix A.3. Iterate

the Euler equation (1) forward to give

Etc
s
t+j = cst + Ẽs

t

j∑
i=1

rt+i (17)
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Combining these give

cst =
r

1 + r

1

γ2

(γ1k
s
t + γ3w

s
t + γ5rt) + γcwẼ

s
t

∞∑
j=1

βj
(
γcww

s
t+j + γcrrt+j

)
(18)

where 1 + r = 1
β
is the steady state interest rate and

γcw =
r

1 + r

γ3

γ2

(19)

γcr =

[
r

1 + r

γ5

γ2

− 1

]
(20)

The first term shows how consumption depends on current wealth consisting of capital,

and income from labour and capital (the constants pick up the fact that quantities are

substituted out). The second term shows how consumption depends on expected future

prices. In the case of fixed labour supply the term on capital becomes k
c

r
1+r

which is

the familiar propensity to consume out of wealth - the constant scales linearised capital

to consumption.

2.10 Calibration

The benchmark calibration follows Graham and Wright (2010). Values for most of the

parameters are chosen following Campbell (1994): σ = 1, δ = 0.025, α = 0.6, β = 0.99,

n = 0.2. The intertemporal elasticity of labour supply 1
γ
is chosen to be 5. The aggregate

productivity shock is given the benchmark RBC values, φa = 0.9, σa = 0.7% per quarter.

Graham and Wright (2010) uses empirical estimates of labour income process to calibrate

the idiosyncratic shock φz = 0.9, σz = 5σa.

3 Market-consistent information and learning

This section studies the case of learning from a market-consistent information set, which,

with incomplete markets, will consist of the aggregate return on capital and the island-

specific wage. A perceived law of motion (PLM) is first defined, then, conditional on the

PLM, an expression is derived for the actual law of motion (ALM). It is shown that in

general the state space of the ALM will expand to the history of the economy. Finally,

a condition for e-stability is given

3.1 The perceived law of motion

Assume households estimate a VAR in the prices in their market-consistent information

set, then use this estimated process to forecast future prices. The perceived law of motion
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(PLM) for a household on island s at time t is

ist = φst−1 (L) ist−1 +$it (21)

where φst , a polynomial of order l in the lag operator L, i
s
t is the measurement vector

defined in (15) and $it is the estimation error.9

Define matrices Tr =
[

1 0
]
and Tw =

[
0 1

]
which pick out the return and the

wage respectively from the measurement vector, then

Ẽs
t rt+i = Tr (φs)i ist (22)

Ẽs
twt+i = Tw (φs)i ist (23)

and using this consumption (18) can be written

cst =
r

γ2 (1 + r)

[
γ1k

s
t + γ3w

s
t + γ5rt + θci

(
φst−1 (L)

)
ist
]

(24)

where

θci = (γ3Tw + γ5Tr) βφ
s (I − βφs)−1 (25)

3.2 The actual law of motion

To derive the actual law of motion for the economy individual consumption and labour

supply must be aggregated. It is important to note that no household in the economy

has suffi cient knowledge, either in terms of the structure of the economy or information

about other households, to do this (this is the same as saying households are unable to

form model-consistent expectations). What follows is from the modeler’s perspective.

Firstly, following Honkapohja and Mitra (2006), stack the PLMs for all households in

the economy to give

It = Φt−1 (L) It−1 (26)

where It =
[
i1t i2t .... iSt

]′
and trace (Φt) =

[
φ1
t φ2

t .... φSt

]′
.

Then sum (24) across households and substitute for market clearing prices from (10)

and (11) to give an expression for aggregate consumption

ct = ΘcY (Φt−1)Yt + ΘcI (L) It−1 (27)

where Yt =
[
kt at z1

t .... zSt

]′
is the current vector of states and Φt, defined in (26)

stacks the PLMs for all households. Note that aggregate consumption is independent

of the wealth distribution - this is related to Krusell and Smith’s (1998) finding that the

9As in full-information learning (Carceles-Poveda and Giannitsarou, 2008) circularity is avoided by
assuming that to form estimates at time t the agents use only information from t− 1 and earlier.
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wealth distribution only has a small effects on the dynamics of the model. There is no

effect at all here because of the linearity of the model.

Given states, lagged prices, last period’s perceived law of motion Φt−1 and a knowledge

of the current state vector (27) is suffi cient to solve for aggregate consumption and hence

all other aggregate and idiosyncratic quantities.

3.3 A state space representation

From (27) aggregate consumption depends on lagged prices; and from (10) and (11),

lagged prices depend on lagged aggregate consumption. So repeatedly substituting shows

that current consumption depends on the full history of consumption. In other words,

the state space expands to the full history of the economy. Writing the full state vector

as a stack of the current state vectors Yt

Xt =
[
Yt Yt−1 ... Y0

]′
(28)

and substituting lagged prices into (27) gives

ct = ΘcX

(
{Φi}t−1

i=0

)
Xt (29)

The law of motion for the full state vector is then found by substituting into the

law of motion for the non-expectational states and stacking this on top of the exogenous

processes for aggregate and idiosyncratic technology to give:

Xt = ΘXX

(
{Φi}t−1

i=0

)
Xt−1 + ΘXWWt−1 (30)

whereWt =
[
εt ε1

t .... εSt

]′
is a vector of innovations. This assumes there is an initial

period with Φ0, X0 exogenously given. For a detailed derivation see Appendix A.4.

The expansion of the state space is a normal feature of models with heterogeneous

information across agents. With model-consistent expectations, it is usually formu-

lated as a hierarchy of average expectations of the current state vector (Townsend, 1983,

Woodford, 2003, Nimark, 2007). However there is always an equivalent representation

in terms of lags of the non-expectational state vector (Lorenzoni, 2010, Mackowiak and

Wiederholt, 2009), analogous to the representation derived here.

Proposition 1. Special cases (a) If labour supply is constant (lim η → ∞) the state
vector comprises l lags of the current state vector state Yt. (b) If there is a single lag in

the PLM (l = 1) the state vector comprises the current state vector Yt.

Proof. See Appendix A.4.

Part (b) of the proposition is related to the result of Graham and Wright (2010) that
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in an economy with model-consistent expectations the hierarchy of expectations collapses

in the limiting cases of perfect heterogeneity (σz →∞) and perfect homogeneity (σz = 0)

and in this case the economy evolves according to a first-order autoregressive process.

Expressions for the observable prices in terms of the state vector can be found by

substituting (29) into (10) and (11), and stacking them on top of each other to give

It = ΦiX

(
{Φi}t−1

i=0

)
Xt (31)

This is the actual law of motion (ALM) for the observables.

3.4 Learning rules

A standard learning rule is

φst+1 = φst + γtR
−1
t ist−1

(
is′t − is′t−1φ

s′
t

)
(32)

Rs
t+1 = Rs

t + γt

(
ist−1i

s′

t−1 −Rs
t

)
(33)

where {γt}
∞
t=0 is the gain sequence which needs to satisfy standard conditions. The paper

studies two gain sequences, ordinary least squares learning, with γt = t−1 and constant

gain learning, with γt = γ. Such rules for each household can be stacked on top of each

other to give a learning rule for Φ of the form

Φt+1 = Φt + γtH (Φt, It) (34)

3.5 E-stability and learnability

The standard analysis of the stability of economies under learning is given in Evans

and Honkapohja (2001). Honkapohja and Mitra (2006) extend this to a model with

both structural and learning heterogeneity. This section draws on these techniques

to an economy with heterogeneous and incomplete information sets. Conditions for

convergence of Φt to an equilibrium Φ are found by defining an associated ordinary

differential equation (ODE)

dΦ

dτ
= h (Φ) ,where h (Φ) = lim

t→∞
EH (Φ, Xt) (35)

The economy with learning will converge to Φ only if Φ is a locally stable fixed point of

the associated ODE.

The state-space representation allows an expression to be derived forH. First express
H in terms of lagged states and innovations by substituting for prices from (31) then for
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current states from (30) so (34) can be rewritten as

Φt+1 = Φt + γtH
(
{Φi}t−1

i=0 , Xt−1,Wt−1

)
(36)

Then to obtain an expression for h (Φ) take expectations, picking a particular Φ and take

the limit:

h (Φ) = lim
t→∞

EH (Φ, Xt) = (ΘIXMXΘ′IX)
−1

ΦIXMX (ΘXXΘ′IX −Θ′IXΦ′) (37)

using EXtX
′
t = MX , EXtW

′
t = 0. For a detailed derivation see Appendix A.5.

An equilibrium is a zero of h (Φ). It is e-stable and learnable if the eigenvalues of the

Jacobian of h (Φ) have real parts which are negative.

3.6 The nature of the equilibrium

Proposition 2. Except in the cases of proposition 1 an equilibrium under learning must be
a restricted-perceptions equilibrium in the sense of Evans and Honkapohja (2001, p320)10.

Proof. In general, the PLM (21) depends on some limited history of the observables,

whereas the ALM (31) depends on the full history.

For l = 1, the PLM (21) is of the form

wst = φswwtw
s
t−1 + φswrtrt−1 +$s

wt (38)

rt = φsrwtw
s
t−1 + φsrrtrt−1 +$s

rt (39)

Table 1 shows the coeffi cients of the PLM for different lag lengths at the restricted

perceptions equilibrium, i.e. the elements of the φ which is a zero of (37), along with the

PLM under model-consistent expectations. PLMs at all lag lengths are characterized by

strong first-order autoregressive components. As the number of lags increases, the PLM

approaches the true law of motion at the MCEE.

[TABLE 1 HERE]

How different are the properties of the economy at the restricted-perceptions equilib-

rium from the model-consistent equilibrium11? To study the equilibrium, first "switch

off" learning and fix the beliefs of all households at their value at the restricted-perceptions

equilibrium (this can be thought of as the non-stochastic steady state of the economy, in

10See also Branch (2004).
11The answer to this question is complicated by the fact that the MCEE can only be solved approxi-

mately by truncating the hierarchy of expectations. However Graham and Wright (2010) shows that in
practice the weight on orders of the hierarchy declines quickly so an solution to machine precision can
be found, at least for the calibration used here.
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contrast to the stochastic steady state in which there is a non-degenerate distribution of

beliefs, discussed in section 5.2).

As with all RBC-type models, the main driver of the response of the economy is the

behaviour of consumption, so begin by considering that.

[FIGURE 1 HERE]

Figure 1 shows the impulse response of consumption to an aggregate productivity

shock at the MCEE and at the RPE with 1 lag in the PLM. First note that under model-

consistent expectations the impact effect of the positive technology shock on consumption

is negative. This contrast with the full information response is one of the results of

Graham and Wright (2010). A full discussion can be found there but brief intuition

is as follows. With market-consistent information sets, households do not observe the

aggregate technology shock directly, but instead see its effect as a positive innovation to

both the wage and the return to capital. Consider the response to the latter signal.

An unexpected increase in the return could either be caused by a positive productivity

shock, or because the household overestimated aggregate capital in the previous period.

The certainty equivalent response to the first is to increase consumption, to the second to

reduce consumption. Graham and Wright (2010) shows under all plausible calibrations

the latter effect dominates so the impact response of consumption is negative.

Another way of putting this is, even with model-consistent expectations, households’

limited information sets mean they make predictable (from the modeler’s point of view)

forecast errors in response to the technology shocks (though the forecast errors are white

noise conditional on households’information sets). Turning to the restricted perceptions

equilibrium, households make larger forecast errors (since their PLM is misspecified) and

so consumption responds by more on impact. These bigger forecast errors mean bigger

positive income surprises in subsequent periods so consumption rises above its value at

the MCEE after a few periods then falls back to the steady state. It is possible to show

numerically that welfare is unambiguously lower at the RPE.

Table 2 shows a number of statistics comparing the economy with households’PLMs

fixed at the RPE with various lag lengths to the economy with model-consistent expecta-

tions. First note the modest magnitude of the misspecification - aggregate consumption

is 2% and output 3.5% more volatile in the case with 1 lag in the PLM than in the econ-

omy with model-consistent expectations. Also note that as the number of lags increases

the volatility falls towards its value at the MCEE.

[TABLE 2 HERE]

One further point: the RPE will depend on the choice of the number of households

in the economy. To see this, consider a shock to a single household’s idiosyncratic
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productivity. With many households, the impact on the aggregate economy will be

small and its main affect on the learning rule will be in updating the elements of φst
which relate to the idiosyncratic wage wst . With fewer households, the impact on the

aggregate economy will increase so will also lead to the updating of elements of φst which

relate to the aggregate return r. This can have a significant effect on the properties

of the economy so the number of households needs to be chosen to be suffi ciently high.

Another, more interesting, way in which the equilibria with learning will depend on the

number of households is discussed in section 5.5.

3.7 Projection

The consumption function (24) is well defined as long as I − βφst is invertible. Since this
term comes from computing the discounted sum of the expected future path of prices,

the invertibility condition is the same as requiring the sum to be bounded. This is

summarised in the following definition

Definition 4. (stable PLM).A given φs is stable if it results in consumption being bounded.
This will be the case if the eigenvalues of φst are less than β

−1 > 1 in absolute value.

Theorem 4 of Ljung (1977, p. 557), which forms the basis of many convergence

results in the learning literature employs a "projection facility" constraining estimates

to remain in a region around the REE. This has been widely criticized (e.g. Grandmont

and Laroque, 1991 and Grandmont, 1998) since it involves endowing households with

knowledge of what they are supposed to be learning. Even though a projection facility

has been shown not to be necessary to proofs of convergence and stability in models with

a unique REE (Bray and Savin, 1986) or more generally (Evans and Honkapohja, 1998),

it is crucial for any numerical implementation of learning. To see this note that with a

non-zero gain there is always a finite probability that particular sequence of shocks will

lead to a household estimating a PLM that is unstable in the sense of definition 4, leading

forecasts to grow without limit and consumption to be undefined.

The form of the consumption function (24) gives a natural way to define a projection

algorithm which escapes the critiques of Grandmont and Laroque.

Definition 5. (projection facility).After estimating the PLM households check the eigen-

values of φst . If they are greater than q the household discards the estimated φst and

chooses a different one.

If the projection facility is used there are many ways to pick a φst which do not involve

endowing households with knowledge of the RPE. The simplest way is to use the value

from the previous period12.
12Other possibilities are to pick one from a random household; to use the average across households

etc. As long as the number of households is suffi ciently large, the choice makes no difference to the
properties of the economy.
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In the remainder of the paper, q is taken to be unity which can be interpreted as

endowing households with the knowledge that the macroeconomy is stationary. There

are two justifications for this. Firstly, estimating a VAR of the form (21) is problematic

with non-stationary variables. Secondly, the consumption function is strongly non-linear

for PLMs with eigenvalues greater than unity (recall that as eig (φs) → β−1, cs → +∞)
and allowing beliefs to enter this range means arbitrary amounts of volatility can be

generated in the macroeconomy.

Projection is rarely discussed in the context of numerical analysis. Williams (2003)

and Eusepi and Preston (2011) both mention they discard explosive values though it

is not clear if this includes rational bubble paths, and in the latter paper at least the

extremely small gains used means that such paths will be very rare events. With "Euler

equation learning" (Preston, 2005; Honkapohja et al, 2011), there is no infinite forward

sum in the consumption function so the issue does not arise although Carceles-Poveda

and Giannitsarou (2007, p2673) explicitly exclude non-stationary paths.

4 Ordinary least squares learning

This section investigates the convergence properties of the model under ordinary least

squares (OLS)13. Why does convergence matter? When studying the properties of

models with learning they are usually initialized with PLMs at the MCEE (or RPE,

if appropriate). This avoids transitional dynamics, governed by an arbitrary choice of

prior, affecting the results. However without fast convergence this is informationally

implausible - households are being endowed with what the nature of learning models

assumes they are unable to calculate.

First, consider the benchmark case of full information. Convergence with ordinary

least squares learning is typically found to be slow. To illustrate this take the represen-

tative household RBC model of Evans and Honkapohja (2001) or Carceles-Poveda and

Giannitsarou (2007). In such a model, the perceived law of motion is

kt+1 = φkkkt + φaaat (40)

and figure 2 shows the convergence of φkk starting from a prior of 0.5 of its value at the

MCEE. Even after 10,000 periods, the parameter is a long way from its value at the

MCEE.

[FIGURE 2 HERE]

Turning to the model of this paper, take the benchmark calibration with one lag in

13Since under OLS the gain tends to zero as time passes, it is rarely used to study business cycle
dynamics, but remains an important benchmark case.
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the perceived law of motion (l = 1)14. Choose a prior to be very different from the RPE,

for example one drawn across households from N (0.3, 0.1). This choice is of course

arbitrary, but a choice needs to be made if figures are to be shown.

[FIGURE 3 HERE]

Figure 3 shows the convergence of this economy in terms of deviation along the con-

vergence path of the elements of the average PLM from their value at the RPE. The

lines are the average values across 10, 000 runs of the model; 95% of these runs lie in

the shaded areas. Convergence is remarkably fast when compared with the standard

case of figure 2 (note the figures have different scales) with all elements of the PLM close

to their value at the RPE within a few hundred periods. Graham (2011) shows (in a

full-information model) that this is a consequence of modelling households as having infi-

nite forecast horizons in contrast to the "Euler equation learning" of the standard model.

The intuition for this is that individual rationality leads to behaviour away from the RPE

being much closer to that at the RPE, and hence convergence is much faster.15

4.1
√
t convergence

Theorem 3 of Benveniste et al (1990, p110)16 studies a system of the form of (26) and (30)

under OLS learning (γt = t−1). It states that if the derivative of h (Φ) = EH (Φ, Xt)

has all eigenvalues with real parts less than −0.5 then

√
t (Φt − Φ∗)

D→ N (0, P ) (41)

where the matrix P satisfies the Lyapunov equation

[I/2 + hΦ (Φ∗)]P + P [I/2 + hΦ (Φ∗)]′ + EH (Φ∗, Xt)H (Φ∗, Xt)
′ = 0 (42)

As pointed out by Marcet and Sargent (1995), this means that if the conditions are satis-

fied, there is root - t convergence, although the formula for the variance of the estimators

is modified from the classical case. As the eigenvalues become larger, convergence is

slower in the sense that the variance covariance matrix of the limiting distribution P is

larger.

In the RBC case discussed in the previous section, the eigenvalues are −0.074 and

−0.042, too large to apply the theorem. In the model of this paper, no analytical

14Using more lags makes no significant difference to the results.
15Another interesting feature is the "notch" in the confidence interval for φww. This shows that

when the PLM is far from the RPE its properties is dominated by the (mostly aggregate) transitional
dynamics so the distribution across agents remains narrow. When the PLM is close to the RPE, this
strong aggregate component fades and the distribution is dominated by idiosyncratic variation across
households.
16Also used by Marcet and Sargent (1995) and Ferrero (2007).

18



expression is available for the eigenvalues so they were calculated numerically. For the

baseline calibration, the eigenvalues lie in the range [−1.26,−1.00] so the condition of

Benveniste et al (1990) is satisfied and convergence is at the rate root-t or faster. The

eigenvalues were then calculated for around 30,000 calibrations17 and across all of these

the upper bound of the eigenvalues was found to be −1. So root-t convergence appears

to be a robust property of this model.

5 Constant gain learning

Constant gain learning is often used to study business cycle dynamics since it captures

the idea that learning is perpetual and allows households to respond to changes in the

structure of the economy. The gain parameter can be chosen in various ways. Milani

(2007, 2009) estimates it along with the other parameters of the model. Eusepi and

Preston (2011) use survey data. Evans and Ramey (2006) allow households to choose

it optimally. This paper will study gain parameters in the range [0.001 0.05] which

encompasses all the values commonly used. A baseline value of 0.01 is chosen.

A simple way to interpret the gain is by noting that the weight on the forecast error

from τ periods ago relative to the weight from the most recent forecast error is given by

(1− γ)s. So a gain of 0.02 (as estimated in Milani, 2007) implies data from around 34

quarters ago is given approximately half the weight of current data. On the other hand,

a gain of 0.002 (the baseline value of Eusepi and Preston, 2011) means households put

half as much weight on data from 84 years ago as they do on current data.

5.1 Convergence

The economy with constant gain converges to a stationary distribution of beliefs (see

Evans and Honkapohja, 2001, p162, for conditions under which such convergence will

occur), the properties of the distribution depending on the size of the gain and the

stochastic properties of the model. As the gain increases, convergence will generally

be faster and figure 4 shows this for a single component of the PLM, φww. There are a

number of interesting aspects to this figure. Firstly, with low gains the economy takes an

extremely long time to converge to the RPE. Secondly, as the gain increases the economy

seems to converge to a PLM with a mean lower than at the RPE. Thirdly, the economy

converges to a limiting distribution, and the variance of this distribution increases with

the gain. The properties of the distribution is investigated in more detail in section 5.2.

[FIGURE 4 HERE]
17The ranges were chosen to encompass values commonly used in the literature. The grid was not par-

ticularly fine, but experimentation showed no evidence of any non-linear effects. δ ∈ [0.01,0.025, 0.10] ;α
∈ [0.4,0.6, 0.8] ; ; β ∈ [0.96,0.99, 0.999] ; η ∈ [0,0.2, 1,∞] ; ρa ∈ 0.7,0.9, 0.95 ,0.99]; σa ∈ [0.5,0.7, 1] ;
ρz ∈ [0.7,0.9, 0.95, 0.99] ; σz ∈ [0, 1,3.5, 5, 7, 10]. The bold figure represents the baseline calibration.
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5.2 The steady state distribution of beliefs

In a representative household model, the intuition for how constant gain learning affects

the economy seems straightforward. Compared to the model-consistent expectations

equilibrium, learning makes the representative household’s expectations more volatile and

this volatility of expectations translates into higher volatility of aggregates. However,

Graham (2011) shows that this intuition only goes through in special cases and the

distribution of beliefs across time must be taken into account. In a heterogeneous agent

model, things are more complicated still since the stochastic steady state of the economy

is now characterized by a distribution across households of their beliefs. In other words,

while in the representative agent case the distribution of beliefs is a time-series, with

heterogeneous households it is also a cross section. The next section describes this

distribution.

Figure 5 shows the steady state distribution of beliefs for various values of the gain

parameter. With one lag in the PLM (and for the rest of the section I shall use this

specification) the PLM is represented by the 4 elements of φ. It is important to remember

that the distributions in the figure are for each element of φ taken alone, whereas in fact

they are jointly distributed.

The figure shows three interesting features. As the gain parameter increases the

means of the distributions (particularly of the AR coeffi cients φww and φrr) fall; the stan-

dard deviations of the distributions increase and they become more asymmetrical with

a long leftward tail and a short rightward tail. This is a consequence of projection (see

section 3.7). Realizations of φ on the right-hand side of the distributions ,which corre-

spond to non-stationary paths of expected prices, will be discarded, so the distributions

are truncated.

[FIGURE 5 HERE]

Table 3 shows the moments of a distribution fitted to the steady state distribution

of each element of the PLM. This confirms the impression from figure 5: as the gain

increases the mean of the distribution falls; and both its standard deviation and skewness

increase. Again remember that the elements of φ are in fact jointly distributed

[TABLE 3 HERE]

A further feature is shown by table 3. The mean of the distribution is lower than

the MCEE even for very small gains in which the projection facility is not invoked. To

understand this and to clarify the impact of the distribution on aggregates, consider a

simple example.
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5.3 A simple example

To understand the effect of a stationary distribution of beliefs on the macroeconomy, it

is helpful to consider a simple univariate example18 in which capital and labour are fixed

and income follow an exogenous AR (1) process:

yt = ρyt−1 + εt (43)

Beliefs are parametrized by a scalar φ such that

Ẽtyt+i = φiyt (44)

then the consumption function is

ct =
r

1 + r

[
(1 + r) bt +

1

1− φt (1 + r)−1yt

]
(45)

where bt is current wealth and the second term represents expectations about future in-

come. Note the first and second derivatives to φ of the second term are positive capturing

the positive and increasing effect of income persistence on consumption. Although only

the infinite forecast horizon case will be considered here, the second derivative of f is

positive as long as T > 0.

When beliefs are model-consistent, i.e. φt = ρ ∀t consumption will be a random walk
and the standard deviation of the first difference of consumption is

σ∗∆c =
r

1 + r

1

1− ρ (1 + r)−1σε (46)

Beliefs are updated by a simplified constant gain learning algorithm

φt+1 = φt + γ (yt − φtyt−1) (47)

How does the stationary distribution of φ affect the economy? Firstly, assume that

the distribution has a mean of ρ (the value of beliefs at the MCEE); non-zero standard

deviation and is symmetric. To understand the impact of this distribution on the un-

conditional properties of consumption consider the response of consumption to a positive

innovation to income. Taking ρ = 0.9, figure 6 shows the response in the three cases of

φ0 = φ∗ = ρ; φ0 = 0.95 > ρ and φ0 = 0.85 < ρ.

[FIGURE 6 HERE]

18Full details are in Appendix B.
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5.3.1 Case 1: φ = ρ

If households’beliefs are correct, then the impact response of consumption will be exactly

that at the MCEE. In the second period, beliefs will be revised upwards. This will mean

consumption in period 2 is higher than it would be in at MCEE since households believe

income will be more persistent than it actually is. In the third period, there are two

effects. Firstly, beliefs will be revised downward towards the MCEE. Secondly, household

wealth will be lower than expected. Both of these tend to reduce consumption. As time

passes, these two effects continue, and at some point consumption will fall below its

value at the MCEE and remain there for the rest of history (as is required to satisfy the

intertemporal budget constraint).

To summarise, learning has no impact effect but causes consumption to rise above

its value at the MCEE for a number of periods after the initial one, then fall below this

value for the rest of time.

Proposition 3. If beliefs are initialized at the MCEE, the impulse response function with
learning implies a higher volatility of consumption growth than without learning

Proof. See Appendix B.1

5.3.2 Case 2: φ > ρ

In this case households believe that income is more persistent that it is at the MCEE so

on impact increase their consumption by more than with correct beliefs. In subsequent

periods there are two effects. Firstly, households wealth will be lower than expected

which will tend to reduce consumption. Secondly, beliefs will be revised, in the second

period upward and in subsequent periods downward back towards the MCEE. In the

second period the second effect dominates so consumption increases further, in subsequent

periods both effects go in the same direction and as time passes, consumption will fall

below its value at the MCEE and stay there for the rest of time. So the overall effect is

higher consumption than at the MCEE for some initial periods, then consumption lower

than at the MCEE for the rest of time.

5.3.3 Case 3: φ < ρ

The intuition for this case is simply the mirror image of that with φ > ρ. However

note the difference in magnitude. Since the derivative of the consumption function is

increasing in φ, the response is much smaller to a lower value of φ than to the higher one

of the previous section.

Given these three cases, the unconditional properties of consumption will be the aver-

age of the three cases weighted by the stationary distribution of φ. Since the distribution
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is assumed to be symmetric, the larger impact of case 2 will dominate the smaller one of

case 3 and the volatility of consumption will increase.

So the distribution of beliefs will unambiguously increase the volatility of consumption.

The higher the gain, the higher will be the standard deviation of beliefs so the higher will

be the standard deviation of consumption.

There is a further effect. The theorem of Evans and Honkapohja (2001) that states

the mean of the distribution will be at the MCEE only holds for small values of the gain.

In practice, the mean will often be different from the MCEE. Since the distribution of

beliefs causes the mean response of consumption to be different from that at the MCEE,

the response of capital will also be different (if consumption responds by more capital

would be expected to be less persistent) and hence the mean ALM will be different from

the MCEE. So the mean of the distribution will be different from the MCEE, in this

case lower.

How do the properties of consumption change if the mean of the distribution is lower

than at the MCEE (either for the reason given in the previous paragraph or due to the

projection facility, as will be discussed in the next section)? If the mean is lower, draws

of φ from case 3 are more likely than those from case 2, and if the it is suffi ciently low

this will result in the standard deviation of consumption falling below its value at the

MCEE. Similarly, if the distribution is suffi ciently skewed to the left this will result in

the standard deviation of consumption falling.

To summarise, this simple example suggests that the stationary distribution of beliefs

will have the following effects:

1. If it is symmetrical, the non-linearity of consumption to beliefs will mean consump-

tion responds by more on impact and be more volatile. This will imply the mean

of the distribution is slightly lower than at the MCEE.

2. If the mean of the distribution is lower, this will offset the effects in (1) and make

consumption respond by less on impact and be less volatile

3. If the distribution is skewed to the left, this will further offset the effects.

5.4 The aggregate economy

To analyse the properties of the aggregate economy, first take the gain to be γ = 0.01.

Sensitivities to different gains will be considered later. Figure 7 shows the impulse

responses of aggregates to a 1% positive innovation in the process for aggregate technol-

ogy19. For each variable three lines are plotted. The heavy line is the response of the

model with learning, starting from the steady state distribution of beliefs. The dashed

19For clarity, the figures omit to show the distribution of responses of the variables across households.
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line is the response of the model at the RPE (i.e. with all household beliefs fixed at

the RPE). The light line is the response of the model at the mean of the steady state

distribution (i.e. with all household beliefs fixed at the mean).

[FIGURE 7 HERE]

Start by considering the first panel of the figure, the response of aggregate consump-

tion. First compare the heavy line with the dashed line to see that the impact response

of consumption is smaller in magnitude with learning than at the RPE, in other words

learning mutes the impact of the shock. To understand this, recall the three effects of

beliefs on consumption described in the previous section. Since the mean of the dis-

tribution is lower than at the RPE (or in other words households expect the shock to

have less persistent effects on prices than it actually does), households respond as if the

shock were less persistent and this reduces its impact. The combination of the second

and third effects could go in either direction - increasing the impact if the nonlinearity

dominates, or reducing it if skewness dominates. To show the magnitude of these effects,

the light line on the figure shows the response if all beliefs were fixed at the mean of the

distribution. The gap between the light line and the heavy line shows that the combined

effect of skewness and non-linearity works to offset the effect of the lower mean.

In subsequent periods, two things happen. Firstly households get unexpected factor

income (since prices are more persistent than they on average expected); secondly house-

holds update their PLMs so the entire distribution of beliefs shift. In practice, this last

effect is too small to see on the figure, in the second period the difference between the

path of consumption with a gain of 0.01 and that with no learning (a gain of 0) is of the

order of 10−3. The effect is so small because the idiosyncratic volatility is so much more

volatile than the aggregate so aggregate shocks get a small weight in the updating rule

(32). This is in contrast to representative agent models (Graham, 2011 or Eusepi and

Preston 2011) in which impulse response show a pronounced kink in the period after the

shock when beliefs are updated.

This is an important sense in which heterogeneity changes the effect of learning on

the economy. Since the volatility of aggregate shocks is small compared to that of the

idiosyncratic shocks, an innovation in prices due to an aggregate shock only has a small

effect on households’beliefs.

The combination of all these effects means the magnitude of the response of con-

sumption is smaller than at the RPE for the first 60 periods or so from the impact of the

shock. After this (just off the right-hand side of the figure) consumption with learning

stays above that at the RPE as both adjust back to the steady state.

To summarise, learning mutes the response of consumption on impact but makes the

response more persistent. Other variables show similar qualitative patterns.

[TABLE 4 HERE]
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Table 4 shows how the standard deviations of aggregate variables to their values at

the RPE change with the gain. Looking first down the columns of the table there is

evidence of non-linearity with respect to the gain - the standard deviations of variables

first increases then, for gains above 0.01 starts to decrease. As the gain increases, the

distribution becomes more skewed with less mass at very persistent values of beliefs, so

the skewness effect starts to dominate the non-linearity effect, reducing the impact of

the shock still further. Across all gains, the standard deviation of never more than 1%

higher than at the RPE, and falls to a 2% lower at higher gains. Again, therefore, the

simple intuition that learning increases volatility does not go through to this model, but

more important than the sign of the changes is how modest they are, particularly given

how little information households are using to form forecasts. In practice the economy

with learning would be indistinguishable from one with model-consistent expectations,

at least to an econometrician subject to the typical limits on macroeconomic data.

However, recall that the model-consistent expectations equilibrium which the economy

with learning resembles is that with market-consistent information of Graham andWright

(2010) which differs in significant ways from the equilibrium with full information. In

other words, assumptions about information have a large effect on the properties of

aggregates; assumptions on whether households can form model-consistent expectations

seem much less important.

5.5 The idiosyncratic economy

The previous section discussed the response of aggregates. What about household vari-

ables? First recall that household variables are non-stationary since idiosyncratic shocks

are pure permanent income and have a permanent effect on household wealth and con-

sumption (as is the case at the equilibrium with model-consistent expectations). So one

appropriate measure is the standard deviation of consumption growth (an alternative

would be to use any of the wide range of filters available). Table 5 shows this statistic,

averaged across households, for different values of the gain parameter. For low values of

the gain, the volatility of household consumption is very close to that at the RPE. As

the gain increases, the standard deviation increases to a maximum (at to a gain of 0.01)

of four times that at the RPE.

[TABLE 5 HERE]

This is an appealing feature of the model. At the restricted perceptions equilibrium,

the standard deviation of household consumption growth is 0.51%, much lower than the

2− 3% found in the data (e.g. Attanasio et al, 2002). With a gain of 0.01, this becomes

2.4% per quarter, within the range of observed values. As the gain increases above 0.01,

the volatility of consumption growth falls.
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For a particular household, the steady state distribution of beliefs discussed in section

5.2 is a time series distribution: in a period when the PLM represents a persistent path

for expected prices households change their consumption by a large amount. However

some households with such beliefs will receive an idiosyncratic shock which lead them

to increase their consumption, and some will receive an idiosyncratic shock which lead

them to decrease their consumption. Both shocks result in higher volatility of household

consumption, but in aggregate their effect cancels out to leave the much small aggregate

effects described in the previous section. This gives a further mechanism in addition to

that described in section 3.6 by which the number of households affects the dynamics of

the model. If the number of households is small, idiosyncratic volatility will contami-

nate the aggregate economy. As shown in table 6, with a small number of households

effectively arbitrary amounts of aggregate volatility can be generated20.

[TABLE 6 HERE]

5.6 Sensitivities

While the structural parameters of the model (β, σ, δ, α, η) change the equilibrium, they

do not change the informational problem and so have little effect on the properties of the

economy with learning relative to the economy with model-consistent expectations. As

discussed in Graham and Wright (2010), it is the properties of the shocks which change

the informational problem in interesting ways, and the same is true of the model with

learning.

[TABLE 7 HERE]

Table 7 shows how the ratio of the standard deviation of aggregate consumption in

the model with learning to its value at the RPE changes with the persistence of the

aggregate and the idiosyncratic shocks. To understand these results, remember that the

return to capital is an aggregate object and so its persistence is largely determined by

the persistence of the aggregate shock. In contrast, because the idiosyncratic shock is

much more volatile than the aggregate, the persistence of the household wage is largely

determined by the persistence of the idiosyncratic shock. Thus increasing the persistence

of the aggregate shock is like shifting the distribution of φrr to the right; and increasing

the persistence of the idiosyncratic shock does the same for φww. As the distributions

shift to the right, projection is more likely to happen so the mean of the distribution

falls further below its value at the RPE and the effects described in section 5.4 become

stronger. On the other hand, for lower values of persistence, projection is less likely to

20This suggests a simple rule of thumb for picking the number of agents to use for simulations. Increase
the number of agents until doubling this number has no effect on the statistics of interest at the desired
level of accuracy.
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happen so the distribution becomes more symmetrical with its mean closer to the value

at the RPE. Both these effect can be seen in table 7. The left-hand column sees a

smaller effect of learning, but one more linear in the gain. The right-hand column sees

a larger effect, but more non-linear in the gain.

5.7 An intercept in the learning rule

A number of recent papers (Milani, 2011, Eusepi and Preston, 2011) include an intercept

in the learning rule, interpreted as capturing households’uncertainty about the steady

state. It is straightforward to augment the model of this paper with an intercept by

changing the measurement vector (15) to ist =
[

1 rt wst

]′
, (see the Appendix for

details). When this is done the restricted-perceptions equilibrium (which is unchanged)

remains e-stable and the convergence properties of the model are very similar.

However the addition of an intercept has significant effects on the properties of the

model - table 8 shows the moments for different gains. Now at a gain of 0.001 consump-

tion and output are around 10% more volatile than at the RPE, in contrast to the model

without an intercept in which there was almost no amplification.

[TABLE 8 HERE]

To see why this happens, firstly consider the steady state distribution of beliefs.

Figure 8 shows the distribution of beliefs about the intercept of the wage equation (the

distributions of the other components of beliefs are broadly similar to those shown in

figure 5). Note the high volatility of beliefs: this is a consequence, from (9), of the high

volatility of the idiosyncratic shock.

[FIGURE 8 HERE]

Why should uncertainty about the intercept translate into high volatility? To answer

this, modify the simple example of section 5.3 to include an intercept. Consumption is

then

ct =
r

1 + r

[
(1 + r) bt +

1

1− (1 + r)−1φ1 +
1

1− φt (1 + r)−1yt

]
(48)

where the second term picks up the effect of the intercept, a discounted forward sum of

a constant. For the discount factor of the baseline calibration, 1
1−(1+r)−1

≈ 100 which, if

the persistence of income is 0.9 is around 10 times higher than the coeffi cient on income.

So variations in φ1 are greatly amplified
21. This happens to such an extent that for

values of the gain greater than 0.005 , the economy becomes unstable so no values are

reported.

21This also explains the strong effect of updating beliefs present in Eusepi and Preston (2011) but
absent from the impulse response of this paper - a small change in the element of φ relating to the
intercept has a massively amplified effect on consumption.
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Why does this lead to instability? Imagine a household learning a large positive

value for the constant. This means their consumption increases dramatically, which

will increase aggregate consumption. Other things equal, higher aggregate consumption

means lower aggregate capital and lower aggregate labour supply, so the return to capital

and the wage increase and in the next period which will increase φ1 further; and hence

consumption still further leading to instability.22 Such instability is more of a problem

in a heterogeneous agent economy than in one with identical agents since the higher

volatility of idiosyncratic shocks is translated into wider distributions of beliefs so a

higher probability of a draw leading to instability. It also arises only if households are

very forward looking - in models that take the "Euler equation learning" approach (for

example Milani, 2011, which uses an intercept) it is not an issue.

While using a low gain, as in Eusepi and Preston (2011) avoids this problem, it

seems informational implausible for two reasons. Firstly, a gain of 0.001 implies that

households place around half as much weight on data two centuries old as they do on new

information23. Secondly, as shown in section 5.1, with a gain of 0.001 the economy takes

many thousands of periods to converge to the RPE - so starting the economy from the

steady state distribution is equivalent to endowing households with the very knowledge

they are supposed to be learning.

6 Discussion

This paper has taken a model in which agents have limited information, both about the

structure of the economy and the variables relevant to their decisions. Despite this, the

economy is shown to converge quickly to an equilibrium which is similar to the equilibrium

with model-consistent expectations. Learning does not introduce strong dynamics at the

aggregate level, though more interesting things happen at a household level. Another

way of putting this is, at least in the context of this model, assumptions about information

are important for aggregates; assumptions about the ability of households to form model-

consistent expectations less so.

One strength of the approach taken in this paper is that the informational assumptions

are clear. Households’information sets are constrained by the markets in which they

trade and they use all the information at their disposal to make optimal decisions. They

have no other knowledge either of the structure of the aggregate economy or of the values

of aggregate variables.

On the one hand, as pointed out in Graham and Wright (2010) the assumption of

22Clearly this will only lead to instability of the aggregate economy if households are suffi ciently large,
however even with 20, 000 households the economy shows instability with gains much above 0.005 and
computational constraints prevent more households being used.
23The weight on information τ periods old is γ (1− γ)

τ .
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market-consistent information is itself a strong one - households clearly have many other

sources of information than factor prices - but adding such information (for example

a noisy signal of output) would only further reduce the impact of learning. On the

other hand, section 5.7 showed that if an intercept is added to the learning rule, learning

can have a bigger effect on the properties of the economy. However this comes at the

cost of instability unless the gain is small, and although plausible, the addition of an

intercept seems arbitrary. This is related to a point made by Grandmont (1998) on

the specification of perceived laws of motion. What variables should be included in

them? What econometric specifications should be used? Such choices would be far

more complicated if the model included features such as non-linearity, structural breaks

or non-ergodic shocks.
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Figures and Tables

Figure 1: Response of consumption to a positive aggregate technology shock
at the RPE
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Figure 2: Convergence in the RBC model with learning over 10,000 periods
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PLM from its value at the MCEE. Line is mean value. 95% of values lie within the shaded

area.
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Figure 3: Convergence of the economy with OLS learning - elements of the
PLM

φww φwr

φrw φrr

x-axis shows number of periods; y-axis the deviation of the element of the PLM from its value

at the RPE. Line is mean value of element. 95% of values lie within the shaded area.
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Figure 4: Convergence of the economy with constant gain learning, φww

Gain = 0.001 Gain = 0.005

Gain = 0.01 Gain = 0.05

x-axis shows number of periods; y-axis the deviation of the element of the PLM from its value

at the RPE. Line is mean value of element. 95% of values lie within the shaded area.
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Figure 5: Steady state distribution of beliefs
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Figure 6: A simple example: impulse responses of consumption with
different beliefs
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Figure 7: Impulse response functions to a unit innovation in the process for
aggregate technology
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Figure 8: Steady state distribution of beliefs with intercept in learning rule

­0.5 0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10 4 Distribution of phi(w,cons) with changing gain

0.001
0.002
0.005

40



Table 1: The perceived law of motion at the RPE

Wage equation

l wt−1 rt−1 wt−2 rt−2 wt−3 rt−3 wt−4 rt−4 wt−5 rt−5

1 0.9034 −0.8506

2 0.9026 −0.6324 0.0009 −0.2171

3 0.9026 −0.6270 0.0001 −0.0201 0.0008 −0.2012

4 0.9025 −0.6223 0.0001 −0.0197 0.0001 −0.0186 0.0008 −0.1865

5 0.9025 −0.6181 0.0001 −0.0193 0.0001 −0.0182 0.0001 −0.0173 0.0008 −0.1730

∞ 0.9025 -0.5846 0.0001 −0.0171 0.0001 −0.0158 0.0001 −0.0147 0.0001 −0.0137

Return equation

l wt−1 rt−1 wt−2 rt−2 wt−3 rt−3 wt−4 rt−4 wt−5 rt−5

1 −0.0002 0.9443

2 −0.0001 0.9330 −0.0000 0.0113

3 −0.0001 0.9327 −0.0000 0.0010 −0.0000 0.0105

4 −0.0001 0.9324 −0.0000 0.0010 −0.0000 0.0010 −0.0000 0.0097

5 −0.0001 0.9322 −0.0000 0.0010 −0.0000 0.0010 −0.0000 0.0009 −0.0000 0.0090

∞ −0.0001 0.9305 −0.0000 0.0009 −0.0000 0.0008 −0.0000 0.0008 −0.0000 0.0007

41



Table 2: Volatility of economy at the restricted-perceptions equilibrium

l y c n x a

1 2.491 1.575 0.998 7.702 1.605

2 2.483 1.571 0.995 7.683 1.605

3 2.476 1.566 0.992 7.667 1.605

4 2.469 1.562 0.990 7.657 1.605

5 2.463 1.558 0.988 7.648 1.605

MCEE 2.406 1.547 0.985 7.5900 1.605

42



Table 3: The stationary distribution of the autoregressive component of
beliefs

φww φrr

Gain Mean StdDev Skewness

RPE 0.903 0 0

0.001 0.902 0.010 −0.154

0.002 0.901 0.014 −0.244

0.005 0.900 0.022 −0.389

0.01 0.890 0.032 −0.523

0.02 0.877 0.047 −0.651

0.05 0.839 0.077 −0.805

Gain Mean StdDev Skewness

RPE 0.945 0 0

0.001 0.944 0.006 −0.011

0.002 0.942 0.008 −0.025

0.005 0.935 0.020 −0.062

0.01 0.918 0.034 −0.156

0.02 0.902 0.037 −0.312

0.05 0.877 0.058 −0.645

Table 4: Ratio of standard deviation of aggregates with constant gain
learning to that at the RPE

Gain y c n x Projection

0.001 1.001 1.000 1.000 1.001 0.00%

0.002 1.002 1.001 1.001 1.002 0.00%

0.005 1.003 1.003 1.003 1.003 0.02%

0.01 1.003 1.005 1.004 1.004 0.16%

0.02 0.984 0.989 0.990 0.986 0.62%

0.05 0.975 0.984 0.986 0.976 3.04%
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Table 5: Ratio of standard deviation of household consumption growth rates
with constant gain learning to that at the RPE

Gain σ∆c

0.001 0.57%

0.002 0.63%

0.005 1.34%

0.01 2.41%

0.02 2.31%

0.05 1.78%

MCEE 0.51%

Table 6: Ratio of standard deviation of consumption with constant gain
learning, γ = 0.01 to that at the RPE, σc/σRPEc , sensitivity to number of

households

N 50 100 500 1, 000 10, 000

σc/σ
RPE
c 2.341 1.874 1.123 1.005 1.005
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Table 7: Ratio of standard deviation of aggregate consumption with
constant gain learning to that at the RPE

Sensitivity to persistence of aggregate shock

Gain/ρa 0.8 0.9 0.95

0.001 1.000 1.000 1.000

0.002 1.000 1.001 1.004

0.005 1.001 1.003 1.006

0.01 1.002 1.005 0.992

0.02 0.998 0.989 0.971

0.05 0.991 0.984 0.951

Sensitivity to persistence of idiosyncratic shock

Gain/ρz 0.8 0.9 0.95

0.001 1.000 1.000 1.000

0.002 1.001 1.001 1.008

0.005 1.003 1.003 1.008

0.01 1.004 1.005 0.994

0.02 1.000 0.989 0.978

0.05 0.997 0.984 0.961

Table 8: An intercept in the learning rule, ratio of standard deviation of
aggregates with constant gain learning to that at the RPE

Gain y c n x

0.001 1.102 1.081 1.104 1.091

0.002 1.231 1.149 1.221 1.183

0.005 1.841 1.493 1.739 1.621
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A Derivations

In what follows, all of the section except A.3 are from the modeler’s perspective i.e.

no agent in the economy would be able to perform the calculations involved. This

is equivalent to the assumption that households are unable to form model-consistent

expectations.

A.1 Useful formulations

A.1.1 Aggregation

Using the definition of an aggregate quantity (8) along with the adding up constraint

(14) allows the household-level relations to be easily aggregated.

The labour supply relation (2) aggregates to

nt = ς (wt − ct) (A.1)

where ς = 1−N
N
η. The capital evolution equation (3)

kt+1 = (1− δ) kt + δxt (A.2)

The budget constraint (4)

c

y
ct +

(
1− c

y

)
xt = α (wt + nt) + (1− α) (rkt + kt) (A.3)

The production function (5) - using the capital market clearing condition that total

household capital equals total firm capital

yt = at + αnt + (1− α) kt (A.4)

and the factor demand conditions (6) and (7)

rkt = (1− α)
k

y
(yt − kt) (A.5)

wt = yt − nt (A.6)

A.1.2 The capital evolution equation

This follows Campbell (1994). Substituting (A.2) into (A.3) gives

kt+1 = λ̃1kt + λ̃2 [at + nt] + λ̃4ct (A.7)
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where

λ̃1 = (1− δ) +
y

k
(1− α) (A.8)

λ̃2 =
y

k
α [at + nt] (A.9)

λ̃4 = − c
k

(A.10)

Then substituting for labour from (A.1) and for the wage from (A.24) gives

kt+1 = λ1kt + λ2at + λ4ct (A.11)

where

λ1 = λ1 +
λ2ς (1− α)

1 + (1− α) ς
(A.12)

λ2 = λ2

(
1 +

ςα

1 + (1− α) ς

)
(A.13)

λ4 =

(
λ4 − λ2ς +

λ2ς
2 (1− α)

1 + (1− α) ς

)
(A.14)

A.1.3 An expression for the wage

Subtracting (5), and (6) from their aggregate equivalents (A.4) and (A.5) gives

yt − yst = −αzst + α (nt − nst) + (1− α) (kt − jst ) (A.15)

0 = (1− α)
k

y
((yt − yst )− (kt − jst )) (A.16)

and combining these gives

yt − yst = −zst + nt − nst (A.17)

Subtracting (7) from its aggregate equivalent (A.6) gives

wst − wt = (yt − yst )− (nt − nst) (A.18)

so

wst = wt + zst (A.19)

A.2 Market clearing prices

Combining the aggregate production function (A.4) with the aggregate labour demand

relation (A.6) gives

wt = αat + (α− 1)nt + (1− α) kt (A.20)
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Substituting the aggregate labour supply relation (A.1) gives

wt =
αat + (1− α) ςct + (1− α) kt

1 + (1− α) ς
(A.21)

Rearranging

nt =
1

1 + ς (1− α)
[ςαat + ς (1− α) kt − ςct] (A.22)

= ν (αat + (1− α) kt − ct) (A.23)

Then substituting this into the aggregate labour demand relation (A.6) gives

wt =
αat + (1− α) ςct + (1− α) kt

1 + (1− α) ς
(A.24)

Substitute for labour from (A.22) into the aggregate capital demand relation (A.5) to

give

rkt = αat − αkt + αnt (A.25)

and using (A.22) gives

rkt = α (ν (1− α)− 1) kt + α (1 + να) at − ναct (A.26)

Finally note the relation between the gross and net returns to capital

rt = κ2r
k
t (A.27)

where κ2 = rk

r
.

A.3 Optimal household consumption

Substitute the capital evolution equation (3) into the budget constraint (4) to give

c

y
cst +

k

y
kst+1 −

k

y
(1− δ) kst = α (wst + nst) + (1− α)

(
rkt + kst

)
Rearranging this and substituting for labour using the household’s FOC (2) gives

kst = βkst+1 −
1

γ1

(γ3w
s
t + γ5rt − γ2c

s
t) (A.28)
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where

γ1 =
k

y
(1− δ) + (1− α)

γ2 =
c

y
+ ας

γ3 = α (1 + ς)

γ5 =
1− α
κ2

Solving this forward and using the transversality condition on capital gives

γ1k
s
t = −Es

t

∞∑
j=0

βj
(
γ3w

s
t+j + γ5rt+j − γ2c

s
t+j

)
(A.29)

Rewrite this to separate out the expectational part.

γ2E
s
t

∞∑
j=0

βjcst+j = γ1k
s
t + γ3w

s
t + γ5rt + Es

t

∞∑
j=1

βj
(
γ3w

s
t+j + γ5rt+j

)
(A.30)

Solving the Euler equation (1) forward gives

γ2E
s
t

∞∑
j=0

βjcst+j =
γ2

1− β c
s
t +

γ2

1− βE
s
t

∞∑
j=1

βjrt+j (A.31)

and combining these two

cst =
1− β
γ2

(γ1k
s
t + γ3w

s
t + γ5rt) + (1− β)

γ3

γ2

Es
t

∞∑
j=1

βjwst+j +

[
(1− β)

γ5

γ2

− 1

]
Es
t

∞∑
j=1

βjrt+j

=
1− β
γ2

(γ1k
s
t + γ3w

s
t + γ5rt) + (γcwTw + γcrTr) βφ

s (I − βφs)−1 Ist (A.32)

where

γcw = (1− β)
γ5

γ2

− 1 (A.33)

γcr = (1− β)
γ3

γ2

(A.34)

Given the PLM (21) and defining matrices Tw and Tr to pick the respective prices out of

the measurement vector ist

Es
tw

s
t+j = Tw (φs)j ist (A.35)

Es
t rt+j = Tr (φs)j ist (A.36)
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so

cst =
1− β
γ2

(γ1k
s
t + γ3w

s
t + γ5rt) + (γcwTw + γcrTr) βφ

s (I − βφs)−1 Ist (A.37)

A.4 State space representation

Given the structure of the measurement vector

Ist =
[
ist ist−1 ... ist−l

]′
(A.38)

it is helpful to write the term multiplying it in (A.37) as
[
ϑst ϑst−1 ... ϑsi−l

]
and write

the term on current prices as ϑst =
[
ϑs1 ϑsw ϑsr

]
(note this is written to allow an

intercept in the PLM as in section 5.7). Then (A.37) becomes

cst = ϑs1 +
1− β
γ2

(γ1k
s
t + (γ3 + ϑsw)wst + (γ5 + ϑsr) rt) +

L−1∑
l=1

ϑsi−li
s
t−l

and aggregating across households using (9) gives

ct =
1

S

∑
s

ϑs1 +
1− β
γ2

(
γ1kt + γ3φwt + γ5φrt +

1

S

∑
s

ϑswz
s
t

)
+

1

S

∑
s

L−1∑
l=1

ϑsi−li
s
t−l

Using the expression for the market clearing prices (10) and (11) gives

ct = γcc
1

S

∑
s

ϑs1 + γckkt + γcaat + γcz
1

S

∑
s

ϑswz
s
t +

γcc
S

∑
s

L−1∑
l=1

ϑsi−li
s
t−l (A.39)

where

γcc =
1

1− 1−β
γ2

[
γ3φλwc + γ5λrc

] (A.40)

γck = γcc
1− β
γ2

(
γ1 + γ3φλwk + γ5φλrk

)
(A.41)

γca = γcc
1− β
γ2

[
γ3φλwa + λraγ5φ

]
(A.42)

γcz = γcc
1− β
γ2

(A.43)

Define a current state vector

Yt =
[
kt at z1

t .... zSt

]′
(A.44)
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Then (A.39) can be written

ct = ΘcY Yt +
1

SΘcc

L−1∑
l=1

∑
s

ϑsi i
s
t−l... (A.45)

where

ΘcY =
1

Θcc

[
Θck Θca

1
S
ϑ1
w .... 1

S
ϑSw

]
(A.46)

and

Θcc =
1

γcc
(A.47)

Θck =
γck
γcc

(A.48)

Θca =
γca
γcc

(A.49)

Then using (10) and (11) to substitute for lagged prices gives

ct = ΘcY Yt +
1

Θcc

1

S

L−1∑
l=1

∑
s

ϑswlz
s
t +

1

S

L−1∑
l=1

[Θcklkt−l + Θcalat−l + Θcclct−l] (A.50)

where

Θckl =
1

SΘcc

(ϑwlλwk + ϑrlλrk) (A.51)

Θcal =
1

SΘcc

(ϑwlλwa + ϑrlλra) (A.52)

Θccl =
1

SΘcc

(ϑwlλwc + ϑrlλrc) (A.53)

Since consumption depends on lagged states and on lagged consumption, the true state

vector will contain the full history of the current state vector Yt. However there are two

special cases

1. If l = 1 (A.50) does not depend on lagged consumption.

2. If labour supply is fixed η = ∞, ς = 0 so aggregate prices (10) and (11) do not

depend on consumption and hence (A.50) does not depend on lagged consumption.

This proves Proposition 1

Write

ct = Θcx (Φt)Xt (A.54)

where the state vector is given by Xt =
[
Yt Yt−1 Yt−2 .... Y0

]′
and Φt is the stack

of a households’PLMs φst
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Using (A.54), (A.50) can be written

ct = ΘcY Yt +
1

Θcc

1

S

L−1∑
l=1

∑
s

ϑswlz
s
t +

L−1∑
l=1

[Θcklkt−l + Θcalat−l] +
L−1∑
l=1

ΘcclΘcx (Φt−l)Xt−l

(A.55)

Then introduce the dynamics of capital by writing the (A.11) in terms of Xt

kt+1 =
[
λ1 λ2 01x∞

]
Xt + λ4ct (A.56)

=
([

λ1 λ2 0
]

+ λ̃4ΘcX

)
Xt (A.57)

= ΘkX (Φt)Xt (A.58)

and stack this on top of the processes for the shocks to get the law of motion for Xt

Xt =



ΘkX (Φt−1) 0

ρa 0 0 0

0 ρz 0 0

0 0 ... 0

0 0 0 ρz

0

0 I


Xt−1 +

[
0

I

]
Wt−1 (A.59)

= ΘXX (Φt−1)Xt−1 + ΘXWWt−1 (A.60)

where the innovations to the exogenous technology processes (12) and (13) are stacked

as Wt−1 =
[
εt ε1

t ... εst

]
Finally write the observables in terms of the states using (11), (10) and (A.54)

wt =
1

1 + (1− α) ς

{[
(1− α) α 0

]
Yt + (1− α) ςct

}
(A.61)

= ΘwX (Φt)Xt (A.62)

and into (11)

rt =
κ2α

1 + (1− α) ς

{[
−1 (ς + 1) 0

]
Yt−1 − ςct

}
(A.63)

= ΘrX (Φt)Xt (A.64)

Then using (9) can relate the observables It to current prices and exogenous shocks by
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It =


i1t

i2t

..

...

iSt

 = FF


rt

wt

z1
t

...

zst ..

 (A.65)

where

FF =


1 0 0 ... 0

0 1 1 ... 0

1 0 0 ... 0

... ... ... ... ...

... ... ... ... ...

 (A.66)

Then using (A.62) and (A.64) can write
rt

wt

z1
t

...

zst ..

 =

 ΘrX

ΘwX

I

Xt (A.67)

then combine these to give

It = FF

 ΘrX

ΘwX

I (S) ρz

Xt (A.68)

= ΘIX (Φt)Xt (A.69)

So the system in state space form is given by this relation and the state evolution equation

(A.60).

A.5 Learning

This section follows Honkapohja and Mitra (2006) - their Appendix, pp302 - 303 is

particularly relevant. Conditions for convergence of Φt to an equilibrium Φ are found be

defining an associated ordinary differential equation (ODE)

dΦ

dτ
= h (Φ) ,where h (Φ) = lim

t→∞
EH (Φ, Xt) (A.70)

The economy with learning will converge to Φ only if Φ is a locally stable fixed point of

the associated ODE.

53



An updating rule for the PLM can be written generally as

Φt+1 = Φt + γtH (Φt, It) (A.71)

Note that this is no more than a stack of the individual updating rules. At the restricted

perceptions equilibrium, all households are identical so simplify things by taking a single

household, so Φt = φt, the stacked aggregate PLM is the same as the PLM of the single

household in the economy

The learning rule is given by (32) and (33), reproduced here

φst+1 = φst + γtR
−1
t ist−1

(
is′t − is′t−1φ

s′
t

)
(A.72)

Rs
t+1 = Rs

t + γt

(
ist−1i

s′

t−1 −Rs
t

)
(A.73)

Substitute for prices in the expression for R using (A.68) to obtain

Rt+1 = Rt + γt

(
ΘIX

(
φt−1

)
Xt−1X

′
t−1ΘIX

(
φt−1

)′ −Rs
t

)
(A.74)

In the expression for R, fist substitute for prices using (A.68) to obtain

φt+1 = φt + γtR
−1
t ΘIX

(
φt−1

)
Xt−1

(
X ′tΘIX (φt)

′ −X ′t−1ΘIX

(
φt−1

)′
φ′t

)
(A.75)

then use the state evolution equation (A.60) to substitute for Xt

φt+1 = φt+γtR
−1
t ΘIX

(
φt−1

)
Xt−1

([
X ′t−1ΘXX

(
φt−1

)′
+W ′

t−1Θ′XW

]
ΘIX (φt)

′ −X ′t−1ΘIX

(
φt−1

)′
φ′t

)
So

H
(
φt−1, It

)
= R−1

t ΘIX

(
φt−1

)
Xt−1

([
X ′t−1ΘXX

(
φt−1

)′
+W ′

t−1Θ′XW

]
ΘIX (φt)

′ −X ′t−1ΘIX

(
φt−1

)′
φ′t

)
and

lim
t→∞

EH (φ) = R−1ΘIX (φ)MX

(
ΘXX (φ)′ΘIX (φ)′ −ΘIX (φ)′ φ′

)
(A.76)

From (A.74)

lim
t→∞

ER = ΘIX (φ)MXΘIX (φ)′ (A.77)

where MX = EX ′X is the variance covariance matrix of the states, and EWt = 0

lim
t→∞

EH (φ) =
[
ΘIX (φ)′MXΘIX (φ)

]−1
ΘIX (Φ)MX

[
ΘXX (φ)′ΘIX (φ)′ −ΘIX (φ)′ φ′

]
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B Simple example

Take a representative household maximizing expected discounted lifetime utility

max
{ct+i}∞i=0

Ẽt

∞∑
i=0

1

(1 + r)i
ln ct+i (B.1)

subject to a budget constraint

bt+1 = (1 + r) bt + yt − ct (B.2)

where yt is an exogenous process

yt = ρyt−1 + εt (B.3)

and the innovation is drawn from N (0, σ).

Let the household have belief φt about the persistence of the income process, so

Ẽtyt+i = φit yt (B.4)

Note in the case of model-consistent expectations φt = ρ

The first-order condition for consumption is

ct = Etct+1 (B.5)

and, using the transversality condition lim
t→∞

1
(1+r)t

bt = 0, optimal consumption is

ct =
r

1 + r

[
(1 + r) bt +

1

1− φt (1 + r)−1yt

]
(B.6)

Let beliefs be updated according to a simple constant gain algorithm

φt+1 = φt + γ (yt − φtyt−1) (B.7)

Note that at the MCEE consumption is a random walk (taking initial wealth to be zero)

∆c∗t =
r

1 + r

[
1

1− ρ (1 + r)−1

]
εt (B.8)

and

σ∗∆c =
r

1 + r

[
1

1− ρ (1 + r)−1

]
σ (B.9)
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B.1 Proof of proposition 1

Starting from φ0 = ρ, in response to an innovation ε0 beliefs in period 1 are φ1 = ρ+ γε0

and then are revised back towards the MCEE i.e. φt > ρ ∀t > 2. Since f ′ (φ) > 0 this

implies c > c∗ for a number of initial periods then c < c∗ for the rest of history. If

we define the impulse response of consumption as a function IRF then the standard

deviation of the first difference of consumption is given by

σ∆c = σ

∞∑
0

∆IRF 2
t (B.10)

Since φ0 = ρ = φ∗, ∆IRF0 = ∆IRF ∗0

σ∆c = σ∗∆c + σ

∞∑
1

∆IRF 2
t > σ∗∆c (B.11)
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