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Abstract

We reexamine issues of coordination in the standard RBC model. Is the
unique rational expectations equilibrium attainable by rational agents who con-
template the possibility of small deviations from equilibrium? Surprisingly, we
nd that coordination cannot be expected. Even with strong common knowl-
edge assumptions, rational agents anticipating small but persistent deviations
are led to take actions that eventually contradict the common knowledge as-
sumption. This “impossibility” theorem for eductive learning is not fully over-
come when adaptive learning is incorporated into the framework.

1 Introduction

This paper examines the question of expectational coordination in a simple Real Busi-
ness Cycle model. The long run focal point for expectational coordination, as usual in
economic modelling, is the rational expectations (in this simple model, perfect fore-
sight) equilibrium. Our analysis puts emphasis on the expectational robustness of the
equilibrium, using what may be called the “eductive” viewpoint, (see Evans and Gues-
nerie (1993, 2005) and Guesnerie (2002) for an introductory conceptual assessment

!We are indebted for helpful comments from participants in seminars at Chicago, Columbia,
the Delhi School of Economics, New York University, Oregon, and St. Andrews, and in particular
from D. Pearce, H. Uhlig, T. Sadzik and M. Woodford. Financial support from National Science
Foundation Grant no. SES-1025011 is gratefully acknowledged.
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and Guesnerie (2005) for a collection of studies along these lines). “Eductive learning”
can be contrasted with the more standard “evolutive” or “adaptive” learning view-
point,1 which is also introduced at a later stage in the paper. The logical framework
and the central results for eductive learning, as well as the connections with evolutive
learning, are well understood in many contexts, and in particular within simple mod-
els of the overlapping generations type in which agents are short lived (see Gauthier
and Guesnerie (2004) for an assessment that puts emphasis on the consistency of
di!erent viewpoints on expectational coordination).

In contrast, in an RBC (real business cycle) model, agents are long lived and
in fact have innite life. The long-life assumption plays an important role in the
working of the world under examination. In particular, long-lived agents take into
account their permanent income, rather than income over a short horizon, a fact
that has a key impact on the understanding and design of macroeconomic policies.
The question under scrutiny here is the e!ect of the introduction of long-lived agents
on expectational coordination: does it make expectational coordination more or less
robust?

The answer, based on our “eductive” assessment of coordination, is that coordi-
nation is necessarily weak. There is no collective image of the future, close but not
identical to the “true,” self-fullling, image, which is able to trigger (a common knowl-
edge of) the self-fullling image. Thus every such image is subject, at some stage,
to be invalidated by facts: in this simple world, a “crisis,” here an expectational cri-
sis, is in some sense unavoidable. However, the extent of weakness of expectational
coordination, and metaphorically the plausibility of the crisis, depends upon certain
system characteristics that we identify. Furthermore, the “real-time” amendment of
the collective image of the future must necessarily rely on adaptive learning, the suc-
cess of which in maintaining the collective image of the future, i.e. in some sense in
avoiding the crisis, also depends on the system features that we stress.

The paper proceeds as follows. In Section 2, we present the model and its equilib-
ria. We then provide a number of preliminary results, together with their intuition,
on the connections between long-run and short-run individual expectations and ag-
gregate, long-run or short-run, e!ects. In Section 3, we present from two di!erent
viewpoints the eductive criteria that serve to assess expectational robustness of the
equilibrium. Section 4 provides conditions for weak eductive stability, gathered in
three propositions. Section 5 shows that strong eductive stability, whatever its exact
denition, necessarily fails. Section 6 focuses on the possibility of maintaining a plau-
sible image of the future in the presence of real-time adaptive learning. Section 7,
which precedes the Conclusion, contrasts our results with those for a model of capital
accumulation in which agents have short lives.

1For the adaptive learning approach see, for example, Marcet and Sargent (1989), Woodford
(1990) and Evans and Honkapohja (2001).
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2 The model, equilibrium and the inuence of be-
liefs on states

2.1 The model and equilibrium

We consider a standard RBC model, except that for simplicity we assume a xed
labor supply and omit exogenous productivity shocks.2 These simplifying assump-
tions, which amount to a focus on a nonstochastic discrete-time Ramsey model, are
not critical to our results and are made in order to clarify the central features of our
analysis. Elimination of both random shocks and labor-supply response to disequi-
librium expectations can be expected to facilitate coordination on the REE.3 Despite
eliminating these inuences we establish that a strong form of eductive stability fails.

2.1.1 The household problem

There is a continuum of identical innitely-lived households, indexed by ! " [0" 1].
Each household ! owns capital, #!(!), and one unit of labor, supplied inelastically.
At time $ = 0, household ! solves

max %0(!)
!X

!=0

&!'((!(!)), where 0 ) & ) 1, (1)

subject to #!+1(!) = (1 + *!)#!(!) + +! # (!(!)" (2)

with initial wealth #0(!) given. We will focus on the case in which #0(!) is the same
for all agents, but it is convenient not to impose this initially. Here +! is the wage
rate, and *! is the rental rate for capital, at time $, and the utility function '(() is
increasing, strictly concave and smooth. We further impose a No Ponzi Game (NPG)
condition that the present value of their limiting lifetime wealth be nonnegative. If,
at this stage, one does not assume that the future is deterministic, %0(!) captures
the expectations of agent ! formed using his subjective distribution.

Iterating forward the household ow budget constraint, and imposing the NPG
and transversality conditions, gives the lifetime budget constraint of the household;
thus, we rewrite the consumer program as:

max%0(!)
!X

!=0

&!'((!(!))

2The seminal papers developing the RBC model include Kydland and Prescott (1982), Long and
Plosser (1983) and Prescott (1986).

3For example, the weak eductive stability conditions, given below, can be shown to be stricter
when labor supply is elastic.
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subject to

!X

!=0

,!(!(!) =
!X

!=0

,!+! + (1 + *0)#0(!), where

,! =
!Y

"=1

(1 + *")
"1

and ,0 = 1. The rst-order condition for the household optimization problem is the
Euler equation

' 0((!(!)) = &%!(!) ((1 + *!+1)'
0((!+1(!))) . (3)

2.1.2 Equilibrium

Goods are produced by rms from capital and labor using a constant returns to scale
production function -(."/), satisfying the usual assumptions, under conditions of
perfect competition. Thus *!" +! are given by

*! = -#(.!" 1)# 0
+! = -$(.!" 1)"

where .! =
R 1
0
#!(!)1! and where -# = 2-32. and -$ = 2-32/. For convenience,

below, we also write -(.) in place of -(." 1) and use the notation - 0 = -# and
- 00 = -## . In addition we have the aggregate capital accumulation equation

.!+1 = (1# 0).! + -(.!" 1)# 4!"

where 4! =
R 1
0
(!(!)1!.

We can now dene the (unique) perfect foresight steady state.

Denition 1 The perfect foresight steady state .! = #!(!) = .̄, 4! = (!(!) = 4̄,
*! = *̄ and +! = +̄ is given by

1 = &(1 + *̄)

*̄ = -#(.̄" 1)# 0"
+̄ = -$(.̄" 1)

4̄ = -(.̄" 1)# 0.̄"

Since
-(.̄" 1) = -#(.̄" 1).̄ + +̄

we also know that 4̄ = *̄.̄ + +̄: in steady state, agents consume what is left after
depreciated capital is replaced.
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If .0 = .̄ then under perfect foresight the economy stays in the steady state for
all $, and if .0 6= .̄, then there is a unique perfect foresight path that converges to
the steady state as $$%. We now assume that we are initially in steady state, with
#0(!) = .̄ for all !, and we examine the robustness of expectational coordination on
this equilibrium.

2.2 Beliefs, actions, plans and realizations

2.2.1 Preliminaries

Consider an individual agent facing the consumption/savings problem (1)-(2). The
behavior of the agent is in part determined by his beliefs about the future values
of wages and interest rates. At the most general level, an agent’s beliefs may be
stochastic, and so summarized by a sequence of joint density functions {5!(+!" *!)}
where +! and *! are the time $ wage and interest rate histories, respectively. Here,
we restrict attention to deterministic beliefs, i.e. to point expectations, which is
satisfactory in our nonstochastic setting for beliefs that are small deviations from
perfect foresight.

The beliefs of agent ! may therefore be summarized by real sequences of expected
wages and interest rates. We choose to assume that the agent understands the rela-
tionship between aggregate capital and input prices, that is, the agent knows

*! = -
0(.!)# 0" and +! = -(.!)# - 0(.!).!"

so that, in fact, his beliefs are completely captured by a sequence of real numbers
identifying his point expectations of future capital stock: we denote these beliefs by
.̃%(!) = {.%

! (!)}!#0" where .%
0(!) = .0 = .̄ is known to all agents. A beliefs

prole is the collection of all agents’ beliefs: .̃% = {.̃%(!) : ! " [0" 1]}.

The key ingredient of the analysis is the understanding of the e!ect of changes in
individual expectations on changes in individual actions or plans (particularly when
these changes occur around the equilibrium). Taking as reference point the perfect
foresight steady-state path .0 = .̄".! = .̄, for all $, we analyze the e!ects on
an agent’s plans of small changes, around the steady-state values, in the agent’s
individual initial capital #0(!)" in the aggregate initial capital, and in the agent’s
point expectations .%

! (!). The analysis relies on the following lemma.

Lemma 1 Let 6 (#0(!)" .̃%(!)) be the value function associated with the problem (1)-
(2) and the NPG condition, given initial stock #0(!), aggregate capital .0 and beliefs
.̃%(!). The derivatives of the value function, at the steady-state path #0(!) = .̄"
.0 = .̄" .

%
! (!) = .̄ for all $ & 1" are as follows:

1. &'
&(0())

= &"1' 0(4̄)
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2. &'
&#0

= 0

3. &'
&#!

" ())
= 07

The proof of the Lemma is provided in the Appendix. The rst result of the Lemma
is fairly intuitive from examination of the intertemporal budget constraint. The third
result relies on the fact that, given the individual budget constraint (1), the equi-
librium plan .! = #!(!) = .̄, 4! = (!(!) = 4̄" is still feasible, to rst-order ap-
proximation, when *! changes from *̄ to *̄ + -##(.̄" 1)1.%

! (!) and +! changes from
+̄ to +̄ + -#$(.̄" 1)1.%

! (!), since .̄-##(.̄" 1) + -#$(.̄" 1) = 07 (The second result
uses the same argument at period 0). In other words, the expected price changes
induced by the change in expectations of the capital stock have no income e!ect, to
rst-order approximation. For that reason, expected price changes have no welfare
e!ect, as stressed in the second and third parts of the Lemma.

2.2.2 Further insights

Lemma 1 provides a useful computational conclusion, which is most easily exploited by
allowing for a modied notation that measures quantities as deviations from steady
state: set 1#!(!) = #!(!) # .̄ and 1.%

! (!) = .%
! (!) # .̄, and similarly for any

individual or aggregate quantity or point expectation thereof. Using the Lemma we
can now explicitly compute, to rst-order, the consumption function.

Because we are restricting attention to beliefs time paths within a small neighbor-
hood of the steady state, we will often identify a particular variable’s time path with
its rst-order approximation; and we will use our deviation notation to capture this
identication. Suppose, for example, that agent ! has beliefs .̃%(!), initial wealth
#0(!), and that (!(!) is his optimal consumption decision at time $. Then we will also
say that he has beliefs 1.̃%(!), initial wealth 1#0(!) and that 1(!(!) is his optimal
consumption decision at time $.4 With this notation, an intuitively straightforward
consequence of the previous lemma is:

Corollary 1 Consider any time path of beliefs 1.%
! (!), and any initial capital stock

1#0(!) and 1.0. Let 1(!(!) be the associated sequence of consumption decisions.
Then

&"11#0(!) =
X

!#0

&!1(!(!)7 (4)

4We may compute the agent’s optimal consumption as

!"!(#) =
$"!(#)

$%0(#)
!%0(#) +

X

""1

$"!(#)

$&#
" (#)

!&#
" (#)'

where the partial derivatives are evaluated at steady-state beliefs.
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Corollary 1 follows from Lemma 1 and implies in particular that given beliefs 1.%
! (!),

if #0(!) = .̄ then the optimal consumption path satises
P
&!1(!(!) = 07 The

natural welfare interpretation of the second part of the Lemma can again be stressed:
a change in the expected path of aggregate capital, and the corresponding expected
price changes that it triggers, have no rst-order impact on welfare. For this reason,
we call this the welfare corollary.

The next Lemma exploits the welfare corollary as well as the above individual
Euler equation.

Lemma 2 Consider any time path of beliefs 1.%
! (!) and assume 1#0(!) = 0. Let

1(!(!) be the associated sequence of consumption decisions. Then

1(!(!)

4̄
=
1(0(!)

4̄
+
&

8

Ã
!X

*=1

1*%*(!)

!
"

where 8 = #4̄' 00(4̄)3' 0(4̄)" and

1(0(!) = #
µ
&4̄

8

¶Ã !X

*=1

&*1*%*(!)

!
"

where 1*%! (!) = -
00(.̄)1.%

! (!)7

The above Lemma (which is proved in the Appendix) brings two facts into sharp
relief. The rst, expressed in the second formula, is the sensitivity of current con-
sumption, 1(0(!)" to expectations of the distant future. The second, captured in the
rst formula, is still more striking since it shows that 1(!(!)" the plans for even distant
future levels of consumption, can be extremely sensitive to a change in expectations.
As will be seen later, this is a key issue for the assessment of expectational stability
as we approach it here.

3 The robustness of expectational coordination:
“eductive stability” criteria

We shall rst provide a denition of “eductive” stability based on rather abstract
game-theoretical considerations. This will be the “high-tech” view on expectational
coordination. We shall however see later how the sophisticated “high-tech” viewpoint
meets simpler considerations, that may be termed “low-tech”. This rst analysis
will voluntarily leave in the shadow the time dimension of the problem. We shall
reintroduce time in order to see how to adapt the general ideas to our innite horizon
setting.
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3.1 Local eductive stability: the high-tech view

To introduce the concepts we consider an abstract economy populated with rational
economic agents (in all the following, we shall assume that these agents are inni-
tesimal and modelled as a continuum). The agents know the logic of the collective
economic interactions (the underlying model). Both the rationality of the agents and
the model are Common Knowledge (CK). The state of the system is denoted % and
belongs to some subset E of some vector space.

Note that % can be a number (the value of an equilibrium price or a growth
rate), a vector (of equilibrium prices,...), a function (an equilibrium demand function),
an innite trajectory of states, as will be the case in this paper, or a probability
distribution.

Emphasizing the expectational aspects of the problem, we view an equilibrium
of the system as a state %$ such that if everybody believes that it prevails, it does
prevail.5

Under eductive learning, as described below, each agent contemplates the possible
states of the economy implied by the beliefs and associated actions of the economy’s
agents. Coordination on a particular equilibrium outcome obtains when this con-
templation, together with the knowledge that all agents are engaged in the same
contemplation, rules out all potential economic outcomes except the equilibrium. If
coordination on an equilibrium is implied by the eductive learning process, then we
say that the equilibrium is “eductively stable”or “strongly rational.”6 The argument
can be either global or local. We now introduce the local version.

Formally, we say that %$ is locally eductively stable (or locally strongly rational)
if and only if one can nd some non-trivial “small” neighbourhood of %$, 6 (%$),
such that Assertion A implies Assertion B:

Assertion A : It is “hypothetically” CK that % " 6 (%$).

Assertion B : It is CK that % = %$.

Assertion A is at this stage hypothetical.7 In the stable case the mental process
that leads from Assertion A to Assertion B is the following:

1. Because everybody knows that % " 6 (%$), everybody knows that everybody
5Note that (! is such that the assertion “it is CK that ( = (!” is meaningful.
6We remain rather vague on the full game theoretical background of our investigation (for a

deeper discussion of some of the issues, the reader may refer to Guesnerie and Jara-Moroni (2011)).
A study within a “normal form” framework echoing the preoccupations of the present paper can
be found in Matsui and Oyama (2006). We also remark that we here view eductive stability as a
zero-one criterion. Less stringent indices of stability could also be developed, e.g. see Desgranges
and Ghosal (2010) for one such approach.

7Although it might be sustained by some policy commitment.
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limits their responses to actions that are best responses to some probability
distributions over 6 (%$). It follows that everybody knows that the state of the
system will be in a set E(1) ' E .

2. If E(1) is a proper subset of 6 (%$), the mental process goes on as in step 1,
but based now on E(1) instead of 6 (%$). In this case it follows that everybody
knows that the state of the system will be in a set E(2) ' E .

3. The process continues inductively provided that at each stage, E(9) is a proper
subset of E(9# 1).

In the stable case, we then have a decreasing sequence 6 (%$) ( E(1) ( · · · (
E(9 # 1) ( E(9).8 When the sequence converges to %$, the equilibrium is “locally
strongly rational” or “locally eductively” stable. Here “locally” refers to the fact
that the initial neighbourhood is small.9 Note also that intuitively, in the small
neighbourhood case, whenever the rst step conclusion obtains then the next step is
likely to follow.10

3.2 Local eductive stability: the low-tech view

The above denition, based on the successful deletion of non-best responses and start-
ing under the assumption that the state of the system is close to the equilibrium state,
reects the “local” version of a “hyper-rationality” viewpoint. Another plausible in-
tuitive denition of local expectational stability would be the following: there exists
a non-trivial neighbourhood of the equilibrium such that, if everybody believes that
the state of the system is in this neighbourhood, it is necessarily the case, whatever
the specic form taken by everybody’s belief, that the state is in the given neighbour-
hood.11 With the above formal apparatus, the denition would be: one can nd some
non-trivial “small” neighbourhood of %$, 6 (%$), such that if everybody believes that
% " 6 (%$), then the state of the system will be in E(1)" a proper subset of 6 (%$).
Again, 6 (%$) is an initial belief assumption, a universally shared conjecture on the
set of possible states. Actual facts which result from individual actions which are

8A given model or economic environment may be naturally allied with several distinct common
knowledge assumptions: these common knowledge assumptions will all impose the recursive reason-
ing process described above, but will di!er in the initial restrictions on agents’ beliefs; and because
of the central role the initial restriction plays in the eductive learning process, di!erent common
knowledge assumptions may produce di!erent stability results.

9If the initial neighbourhood were equal to the whole space E , then the word global would replace
the word local.
10At step 1, E(1) ' E is CK and the mental process goes on in step 2, so that the rst step

contraction still acts with a decreased support.
11The conjectural equilibrium bounds discussed by Benhabib and Bull (1988), in the context of

the overlapping generations model of money, has a similar motivation.
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best responses to some probability distributions over 6 (%$) cannot falsify the initial
beliefs. Equivalently, in the absence of such a neighbourhood 6 (%$), facts may falsify
any “collective” conjecture, whatever the proximity of the conjectured set to the equi-
librium (unless the conjecture is reduced to the equilibrium%$ itself). The argument
is here low-tech, in the sense that it refers to the rationality of agents, but not to CK
of rationality or of the model:12 the criterion refers to agents’ actions which depend
only on their beliefs about the state of the system, and not on their beliefs about
other agents’ beliefs. To put it in another way, as stated, the criterion appeals only
to the results of the rst step of the high-tech criterion. However, we have argued
above that it is intuitively plausible that the high-tech and low-tech criteria turn out
to be equivalent in this abstract setting, as previously stressed in the literature.13

Finally, some words are in order concerning the connections between the “educ-
tive” viewpoint and the “evolutive learning” viewpoint. At this point let us only say
that the failure to nd a set 6 (%$), for which the equilibrium is locally strongly ra-
tional, signals a tendency for any near-equilibrium states of beliefs, a priori reachable
through some “reasonable” evolutive updating process, to be driven away in some
cases, a fact that threatens the convergence of the corresponding learning rule.14

3.3 Eductive stability: the time dimension

The time dimension of our problem, and in particular the innite horizon, as well as
the fact that agents are innitely-lived, brings some additional issues to our general
framework.

The equilibrium %$ under consideration is given by .! = .̄ for all $, and the
rst issue is concerned with the notion of a neighbourhood 6 (%$), which is less
straightforward here than in timeless or short-horizon contexts. We begin with a
simple, natural restriction on the initial time paths of beliefs, that they lie within an
:-neighborhood of the steady state, which might be called the “cylinder” assumption.
In later sections we consider alternative initial assumptions. The cylinder assumption
is:

B1: For some : ; 0 su"ciently small, .! " <(:) ) [.̄ # :" .̄ + :] for all $.15

Under the high-tech eductive approach we tentatively assume that B1 is common
knowledge, which we refer to as

12It does not even require full knowledge of the model.
13A formal statement of the equivalence requires additional technical assumptions such as the

(weak) assumptions stressed of Guesnerie and Jara-Moroni (2009). Their results also allows one to
show that the local analysis may concentrate on heterogenous point-expectations.
14And certainly forbids a strong form of “monotonic” convergence. More on this subject can be

found in Guesnerie (2002), Guesnerie and Woodford (1991) and Gauthier and Guesnerie (2004).
15We will later introduce alternative assumptions B1’ and B2.
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CK1: B1 is common knowledge.

On occasions when it is necessary to be explicit we index B1 by B1(:) and CK1 by
CK1(:)

Given our emphasis on point expectations, which is justied for a small neigh-
bourhood of beliefs, we say that a beliefs prole .̃% satises B1 provided that
.%
! (!) " <(:) for all ! and $. Furthermore, with CK1, we want to assume that

agent !0 knows that .%
! (!) " <(:), and that agent !00 knows that agent !0 knows

that .%
! (!) " <(:), etc. In the logic of the high-tech approach set out above, the

equilibrium is eductively stable, if rational agents relying on CK1 and common knowl-
edge of rationality, are able to deduce at time zero that .! = .̄ for all $. We will
henceforth say in this case that the steady state is strongly eductively stable.16

A proof of strong eductive stability should proceed as follows. The rst stage of the
mental process places attention on the innite-horizon aggregate plans of the agents,
associated with any combination of initial beliefs in B1. If such rst-order beliefs
yields plans that restrict initial beliefs, then the process continues and generates
some kind of second-order beliefs, and so on. At the end of such a mental process,
agents correctly predict the next period’s state, and all future states resulting from
the guessed actions and plans. Hence, in our intertemporal context, the high-tech
story is more sophisticated than it is in the abstract timeless or one-period context
introduced above, but it follows the same logic.

What about the low-tech version? Here the connection is less straightforward. As
just argued, strong eductive stability requires that the plans of the agents, as deduced
at the rst step of the iteration process by everybody from the B1 assumption, be
compatible with B1. In a sense, as noted above, this condition should be almost
su"cient for (high-tech) strong eductive stability. This line of argument is developed
in Sections 5.1 - 5.2 and used to show the impossibility of strong eductive stability.

However, there are further considerations. There is no longer a one-to-one con-
nection between the plans of the agents, after the rst step of the collective mental
process and the set of actual paths of the economy, assuming either that the initial
beliefs are maintained through time, or a fortiori assuming that they may be recon-
sidered when time passes. In other words, the required contraction property of the
rst stage of the mental process, associated with strong eductive stability and the
absence of falsication of initial beliefs when time passes, are no longer equivalent.

Hence, the low-tech version and the high-tech view of stability a priori di!er, and
there may several low-tech approaches. The low-tech option considered in Section 5.3

16We slightly depart from previous terminology, by leaving the local aspects of the analysis implicit
(and not referring to local eductive stability) and by using the word “strong” to stress that the
simultaneous coordination at time zero concerns the entire time path of aggregate capital. Later we
will distinguish this notion of stability from less demanding concepts discussed below.
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consists of looking at the real-time consequences of the beliefs: we ask whether beliefs
satisfying B1 trigger actions that generate an actual path of the system compatible
with B1. Here, we allow individual agents to hold xed or varying beliefs over time,
even though these beliefs may have been (perhaps repeatedly) contradicted, provided
they stay close to the equilibrium in the sense of B1, and we require that this implies
that aggregate capital continues to satisfy B1.

Finally, another real-time option is to mix adaptive learning considerations with
the idea of non-falsiability of a collective image of the future, associated with the
low-tech version of the eductive approach just stressed. Hence, as is standard under
adaptive learning, agents are assumed to modify their beliefs over time in response
to the realizations of the capital stock according to a natural class of adaptive rules;
and, in line with the eductive approach, for stability we require that both beliefs and
realizations satisfy B1. This approach is studied in Section 6.

Whatever the approach to coordination is, a necessary condition for eductive sta-
bility is that the initial beliefs necessarily trigger a rst period realization of aggregate
capital that is compatible with the belief restriction B1. We call this “weak eductive
stability,” and now turn to this concept.

4 Weak Eductive Stability

4.1 Further on the eductive view: weak eductive stability as
a necessary condition

As just argued, the “strong” stability question is whether CK1 will allow agents
to coordinate on the unique perfect foresight equilibrium .! = .̄ for all $ & 1.
Answering this question will be the focus of Section 5. In the current Section we
determine when a necessary condition for this is met: under B1 will the optimal
plans of agents necessarily lead to consumption and saving decisions (0(!)" #1(!) that
satisfy .1 " [.̄ # :" .̄ + :]? If an equilibrium meets this necessary condition, we say
that it satises weak eductive stability.

Denition 2 The steady state .̄ is weakly eductively stable if, given the initial con-
dition #0(!) = .̄ for all agents !" and that for all agents beliefs satisfy B1, the
aggregate capital stock in period $ = 1 implied by the agents’ optimal plans satises
.1 " <(:).

12



4.2 Weak eductive stability: a rst result

We establish Lemma A1 in the Appendix which identies the worst-case expectations
of the agents in the sense of inducing a maximum threat to the validity of the initial
conjecture. In words the lemma says that the worst-case expectations are on the
boundary, i.e. they arise when agents believe that the capital stock will remain at
one of the boundaries of the cylinder.

Using this lemma, we may now establish our rst stability result.17

Theorem 1 Under B1, the steady state is weakly eductively stable if and only if
¯̄
¯̄&

24̄- 00(.̄)

8(1# &)

¯̄
¯̄ ) 1 (5)

Proof: Let : ; 0 be small, so that linear approximations to optimal behavior are
valid. Weak eductive stability is equivalent to showing that for any beliefs prole
satisfying B1 then 1.1 " =(:) ) (#:" :)7 By Lemma A1 it su"ces to nd necessary
and su"cient conditions guaranteeing that 1.1 " =(:) provided that 1.%

! (!) = > for
all ! and $, and for > = ±:. Using 1#1(!) = #1(0(!), recalling from Lemma 2 that

1(0(!) = #
µ
&4̄

8

¶Ã !X

*=1

&*1*%*(!)

!
"

and noting 1*%*(!) = |- 00| :" where for convenience we now write - 00 for - 00(.̄), we get
that

1#1(!) =

¯̄
¯̄ &

24̄- 00

(1# &)8

¯̄
¯̄ :7

From .! =
R 1
0
#!(!)1! we thus have

1.1 =

¯̄
¯̄ &

24̄- 00

(1# &)8

¯̄
¯̄ :7

Since weak eductive stability requires |1.1| ) :, the result follows.

Note that the formula (5) makes intuitive sense: high 8 and low - 00 promote
eductive stability. As an example, suppose that production is Cobb-Douglas, so that
-(.) = .+, for 0 ) ? ) 1, and that utility takes the constant elasticity form
'(() = (((1",) # 1)3(1# 8), for 8 ; 0. Then

.̄ =

µ
?

*̄ + 0

¶1-(1".)
and - 00 = ?(? # 1).̄+"2.

17In the following theorem we by assumption exclude the case in which
¯̄
)2*̄+ 00, (-(1# )))

¯̄
= 1.

Throughout the paper we exclude analogous nongeneric cases.
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Using these and the steady-state equations for & and 4̄ it can be computed that if,
say, ? = 133, *̄ = 0705 and 0 = 0710, then we have weak eductive stability if and
only if 8 ; 233. This condition is perhaps plausibly satised, but we have obtained
the somewhat surprising result that even weak eductive stability of the RBC model
cannot be taken for granted.

4.3 Weak eductive stability: a further result

A natural question is whether weak eductive stability can be obtained if assumption
B1 is strengthened. We consider the following alternative assumption in which the
possible deviations of .! from .̄ shrink to 0 over time at a geometric rate.

B1’: For some 0 ) @ ) 1 and for : ; 0 su"ciently small, .! " [.̄ # @!:" .̄ + @!:] for
all $.

Theorem 1’ For @ ; 0 su!ciently small, the steady state is weakly eductively stable
under B1’ if and only if

#
- 004̄

8
&2 ) 17

Proof: Suppose again that all agents have homogeneous expectations given by one
of the extremes .%

! (!) = .
%
! = .̄ + @

!"1> for all $ = 1" 2" 3" 7 7 7, where > = ±:7 Then

14! = 140 +
&4̄

8
- 00
P!

*=1 1.
%
*

= 140 +
&4̄

8
- 00>

1# @!

1# @
7

Since also
P!

!=0 &
!14! = 0, we obtain :

!X

!=0

&!140 +
!X

!=0

&!
µ
&4̄

8
- 00>

1# @!

1# @

¶
= 0"

which yields

140 = #
&24̄- 00>

8(1# &@)
7

Considering @$ 0 establishes the result.

Unsurprisingly, by imposing stronger belief assumptions, the condition we obtain
is weaker than the previous one. However, it puts emphasis on similar features of the
system, i.e. &2" 4̄" - 00" 8" with similar intuitive e!ects. We reserve consideration of a
more general class of assumptions to the case of strong eductive stability, to which
we now turn.
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5 Strong eductive stability: impossibility theorems

5.1 The impossibility of CK1 strong eductive stability

The question of local “strong eductive stability” was discussed in Section 3.3 as a
suitable formulation of the high-tech approach that takes into account the time di-
mension. For our economic model we can state this explicitly as follows:

Denition 3 The steady state is strongly eductively stable if CK1 implies that it is
common knowledge that the equilibrium path, .! = .̄ for all $, will take place.

In Theorem 1 we gave a condition for a minimal consistency requirement: given
beliefs B1, the initial plans of agents will necessarily be consistent with B1 in the
rst period $ = 1 if and only if the stated condition (5) is satised. However, this
is only a weak necessary condition for consistency in the stronger sense just dened.
In $ = 0, given their expectations of the aggregate capital stock {.%

! (!)}
!
!=1 each

agent formulates an optimal dynamic consumption plan {(!(!)}
!
!=0. This implies a

trajectory for the aggregate consumption
n
4! =

R 1
0
(!(!)1!

o!
!=0

and hence, using

.!+1 = (1# 0).! + -(.!" 1)# 4!" (6)

a trajectory for the aggregate capital stock {.!}
!
!=1. Recall that<(:) = [.̄#:" .̄+:].

For local strong eductive stability of the steady state, it is necessary — indeed, for the
reasons sketched in Section 3.1, almost su"cient — that the following condition be met:
for every : ; 0 su"ciently small, under CK1(:) the implied trajectory of aggregate
capital {.!}

!
!=1 lies in a strictly smaller cylinder <

!(:0) = <(:0) ×<(:0) × · · · , i.e.
.! " <(:0) for all $ = 1" 2" 3" 7 7 7, for some 0 ) :0 ) :. This of course implies that
for strong eductive stability, for all expectations satisfying CK1(:), we must have
.! " <(:) for all $ = 1" 2" 3" 7 7 7. We now show that, in fact, for all parameter values,
the plans made by agents at time $ = 0, based on CK1, can fail to be compatible
with beliefs. That is,

Theorem 2 The steady state is never CK1 strongly eductively stable.

Proof: Suppose that all agents have homogeneous expectations.%
! (!) = .

%
! = .̄+>

for all $, where > = ±:7 Their consumption plans thus satisfy

14!
4̄

=
140
4̄
+
&

8
$1* =

140
4̄
+
&

8
$- 00>7

We have already shown that 140 = # (8(1# &))
"1 &2- 00>4̄" which implies

14! = #
&- 00>

8
4̄

µ
&

1# &
# $
¶
, for $ = 1" 2" 3" 7 7 7
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Linearizing (6) around the steady state we have 1.!+1 = (1 + -
0 # 0)1.! # 14!, or

1.!+1 = &
"11.! # 14!7

For $ > &3(1# &) it can be seen that 14! is bounded away from 0" with the opposite
sign to >" and grows linearly with $. Hence for $ su"ciently large |14!| ; 2&"1:,
which implies |1.!+1| ; : if |1.!| ) :. It follows that there must be a time $ at
which |1.!| ; :. This establishes the result.

The Theorem 2 result should be contrasted with the fact that, with short-lived
agents, eductive stability holds under assumptions that are reminiscent of (though
often more stringent than) standard conditions (such as determinacy, saddle-path
conguration). The long-run horizon dramatically a!ects expectational coordination,
as evaluated from the strong eductive viewpoint. In the next Section we show that
the instability result does not depend on our specic choice of the neighbourhood.

5.2 The general impossibility of strong eductive stability

We now consider a more general class of beliefs, which nests B1 and B1’:

B2: There exists a specied deterministic sequence {:!}!!=1 with 0 ) :! ) :̄ and :̄
su"ciently small, such that .! " [.̄ # :!" .̄ + :!] for all $.

CK2: B2 is (tentatively) common knowledge.

Under CK2, Denition 3 of strong eductive stability is modied in the obvious
way, and we refer to CK2 strong eductive stability.

We will sometimes refer to the set of trajectories that satisfy B2 as the “B2 tube.”

Theorem 3 The steady state is never CK2 strongly eductively stable.

Proof: Fix a CK assumption with {:!}!!=1 that satises CK2. Suppose that all agents
have homogeneous expectations .%

! (!) = .
%
! = .̄ + :! for all $. Their consumption

plans satisfy
14!
4̄

=
140
4̄

+
&- 00

8

Ã
!X

*=1

:*

!
7 (7)

From Lemma 2 we have

140 = #
&- 00

8
4̄

Ã
!X

*=1

&*:*

!
" (8)
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which implies

14! =
&- 00

8
4̄

Ã
!X

*=1

:* #
!X

*=1

&*:*

!
, for $ = 1" 2" 3" 7 7 7 7 (9)

From the linearization of (6) around the steady, as in the proof of Theorem 2, we
have

1.!+1 = &
"11.! # 14!7 (10)

If (
P!

*=1 :*) = +% then (7)-(8) imply that |14!| $ % as $ $ %. It follows from
(10) that for $ su"ciently large, |1.!| ) :! ) :̄ implies |1.!+1| ; :̄, so that strong
eductive stability fails.

Suppose instead that (
P!

*=1 :*) is nite. Then :! $ 0 as $ $ %. Furthermore,
since 0 ) & ) 1, we have

P!
*=1 :* = (1 + 2@)

P!
*=1 &

*:* for some @ ; 0, and hence
there exists A ; 0 such that

!X

*=1

:* & (1 + @)
!X

*=1

&*:*

for all $ & A . Then $ & A and (9) imply

14! =
& |- 00|
8

4̄

Ã
!X

*=1

&*:* #
!X

*=1

:*

!
* #B"

whereB = /|0 00|
,
4̄@
P!

*=1 &
*:* ; 0. Choose A1 ; A su"ciently large so that :! ) &B32

for all $ ; A1. By (10) it follows that |1.!| ) :! and $ & A1 imply

|1.!+1| & B32 ; :!+1

and again strong eductive stability fails.

We remark that if the common knowledge assumption for a sequence {:!}!!=1
satises CK2 except that :! = 0 for some proper subset of times $, the contradiction
obtains more directly by focusing attention on such times.

The negative result of Theorem 3 means that the hyper-rationalistic viewpoint of
strong eductive stability is never conclusive.18 Our hyper-sophisticated agents cannot
convince themselves that the equilibrium will prevail. In a sense, here in the RBC
model, expectational coordination must appeal to bounded rationality considerations.

18Instability results also appear in the adaptive learning literature. For example, Howitt (1992)
and Evans and Honkapohja (2003) show instability for a class of interest-rate rules in monetary
models. However, these models can also su!er from indeterminacy, and stability under adaptive
learning can be restored with a suitable choice of interest-rate rule. The generic instability results
of the current paper are particularly striking since the RBC model is in general well-behaved.
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5.3 A “real-time” alternative view of stability: another im-
possibility theorem

Another way to read the above statement is that there are always initial plans in line
with initial beliefs of the type B2, which turn out to be inconsistent with such beliefs.
It follows that CK2 cannot trigger common knowledge of the equilibrium.

In this Section we consider an alternative, real-time version of strong eductive
stability, reecting the low-tech viewpoint described in Section 3.3. B2 continues to
describe a (common) set of possible beliefs: the beliefs of individual agents are taken
from this set, and now may or may not change through time. At time $ the earlier
specic beliefs of agents will generally have been falsied by events. However we
suppose that their beliefs always obey the initial restrictions B2 as long as the actual
path up to $ also satises .* " [.̄ # :*" .̄ + :*] for C * $. Will some of the possible
paths of the system generated from such beliefs falsify the assumed initial restrictions
B2? The connection of this question with the notion of strong stability indicated in
Denition 3 is not immediate.19

Let us go to the formal analysis. Our alternative low-tech denition of strong
eductive stability, for collective beliefs of type B2, is the following.

Denition 4 We say that .̄ is strongly stable in the alternative sense if, for all $,
.! " [.̄ # :!" .̄ + :!] implies .!+1 " [.̄ # :!+1" .̄ + :!+1] when each agent ! chooses
(!(!) optimally given expectations {.%

*(!)}
!
*=!+1 consistent with B2.

This denition says that if up to period $, the actual path of capital has remained
compatible with the initially assumed restriction on beliefs, (making them close to
the equilibrium beliefs, in the sense of assumption B2), then it will remain compatible
at period $+1" 7 7 7 " and hence for ever. In other words, when Denition 4 is satised
then collective beliefs B2 are strongly “real-time” stable, in the sense that the realized
trajectory of .! will necessarily satisfy B2.

For this denition we still have:

Theorem 4 Under the beliefs restriction B2, the steady state is never strongly stable
in the sense of the alternative denition.

Equivalently, Theorem 4 states that there do not exist collective beliefs B2 that
are real-time stable in the sense just discussed.

19We know from the previous analysis that initial plans turn out to be incompatible with B2;
however, the actual path of aggregate capital will clearly di!er from the path determined by these
initial plans, and so violation of B2 by the actual path of aggregate capital is not obvious: for more
on the connection between planned and actual paths, see below.
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Our argument will be somewhat informal.20 To demonstrate Theorem 4, we com-
pare the planned and actual aggregate trajectories of capital associated with particu-
lar beliefs consistent with B2. Consider the time $ = 0 homogeneous beliefs {.%

! }!!=1
examined in the Proof of Theorem 3. These beliefs, which satisfy B2, generate a path
of aggregate capital {.!}!!=1 as shown in the proof of Theorem 3, which exits the tube
B2 in nite time. Let us call this path the “planned” or “virtual-time” trajectory of
aggregate capital.

Turning to real-time trajectories, note that in general in the real-time approach,
beliefs at time 0 over the whole trajectory, to innity, determine aggregate .1, given
.0 = .̄; then the beliefs from time 1, up to innity, determine .2, and so on. If all
real time trajectories remain in B2, as described in Denition 4, then it is also the
case for the subset of trajectories with time invariant beliefs, i.e. beliefs maintained
from the start forever.

Thus consider the actual path of capital generated by the beliefs {.%
! }!!=1 just

used to obtain the virtual-time path. That is, consider time-invariant beliefs, i.e.
beliefs maintained from the start forever, that are identical to those just examined,
and consider the corresponding actual path of capital. This real-time trajectory will
di!er from the virtual-time trajectory just considered, because along the real-time
trajectory agents condition their time $ decisions on the realized aggregate capital at
time $ as well as the expected future path of aggregate capital in $+ C for C ; 0.

We claim that, for these beliefs, the real-time trajectory is close (in fact at a
second-order distance) to the planned trajectory. This comes from the fact that
although planned aggregate capital, and the realized aggregate capital along the real-
time path, di!er, this has only a second order e!ect on the change of consumption
of individual agents. This follows from Corollary 1, which stresses that changes in
aggregate .0 do not matter for time $ = 0 decisions. For the same reason, to rst
order, aggregate .! has no impact on time $ decisions. It follows that, to rst-order
approximation, the planned and real aggregate trajectories of capital, when beliefs
are maintained as explained, are the same. Hence, since the virtual-time trajectory
exits the B2 tube in nite time, the real-time trajectory associated with these same
beliefs, maintained in real time, must exit the B2 tube in nite time. Hence Theorem
4 follows from Theorem 3.21

20A formal proof requires only notational care, and is omitted.
21In fact the above argument suggests that real-time beliefs stability, in the sense of Denition 4,

implies strong eductive stability. The reason can be sketched as follows. If all real-time trajectories
remain in B2, as described in Denition 4, then it is also the case for the subset of trajectories
with time invariant beliefs, i.e beliefs maintained from the start for ever. But such trajectories, from
the above “proximity” argument, are close to the virtual time trajectories of the rst step of the
“eductive” process, and so must also remain in the tube, so that the second step of the “eductive
process” can start. (A precise argument would require some additional regularity assumptions of
the kind introduced in the last section of Guesnerie-Jara-Moroni (2011)). The above suggested
implication would then follow; again, from Theorem 3, this would imply Theorem 4.
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This analysis conrms the pessimism of the rst analysis. Trembling beliefs, of the
type described here, are subject to real-time falsication, either in the long run or in
the short run (leading then to what may be called a crisis?). This brings us to the
next viewpoint which must necessarily mix bounded rationality with considerations
associated with the eductive viewpoint. Bounded rationality will lead us to introduce
learning of the evolutive type.

6 Combining eductive and evolutive learning

6.1 The framework

We have found that the steady state .̄ is not strongly eductively stable according to
the various denitions given above. At the same time it is known that it is locally
asymptotically stable under certain statistical learning rules. At rst sight, this sug-
gests a signicant contrast between stable adaptive and unstable eductive approaches.
A better way to consider the connection is to combine these approaches.

We will again endow agents with expectations about the future path of the ag-
gregate capital stock. These expectations are restricted to belong a set, which for
convenience we will take to be described by B1. The set B1 can here be viewed as
describing a collective belief that provides bounds to individual beliefs. Starting from
#0(!) = .̄ these assumptions generate, in accordance with the analysis of Section 4,
a range of possible values for .1.

In line with the eductive approach of Sections 2 and 3, agents’ decisions today
are based on an assessment of the whole future.22 Now, however, the “expected”
trajectory at time $ is supposed not only to reect initial beliefs but to respond to
observed actual capital, and in the spirit of evolutive approach, we specify a set
of adaptive learning rules that determine the way initial expectations change along
the real-time trajectory of aggregate capital. Then, coming back to the collective
belief interpretation of B1, reminiscent of the “eductive” approach, we then ask if the
implied paths {.!}!!=1 will necessarily satisfy B1, i.e. if the collective belief which
serves as a frame for the individual beliefs is subject to falsication. If for some
nonempty subset of adaptive learning rules, falsication is impossible, then we say
that the steady state is B1-stable under evolutive learning, and if this occurs for all
adaptive learning rules within the set of adaptive learning rules under consideration,
we say it is robustly B1-stable under evolutive learning.

22In the adaptive learning literature, within innite-horizon models, this approach has been fol-
lowed, for example, in Sargent (1993, pp. 122-125), Preston (2006), Eusepi and Preston (2008) and
Evans, Honkapoha and Mitra (2009). An alternative approach in the adaptive learning literature is
based on one-step-ahead “Euler equation” learning. See, e.g. Evans and Honkapohja (2001), Ch.
10, and Evans and McGough (2009).
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Let us rst make more precise what the evolutive learning process is about, and
introduce a simple evolutive learning scheme in the nonstochastic RBC model. We
assume, in line with standard adaptive learning studies, that all the agents use the
same adaptive learning rule.23 We also assume that what is learned is not the whole
future trajectory, but some individually relevant summary statistics of the future. Let
us be more precise.

6.2 The real-time system

In the real-time system we assume that at each time $ each agent ! re-solves their
dynamic optimization problem. That is, at each $ agent ! chooses (!(!), given #!(!),
to solve their consumer program, given their time $ expectations about future wages
and interest rates, where these are a function of their time $ expectations of future
aggregate capital,

©
.%
!1!+2(!)

ª!
2=1
. From Corollary 1, for any specied expectations,

the optimal path of consumption satises &"11#!(!) =
P!

*=0 &
*1(!+*(!), and from

Lemma 2 we have 1(!+*(!) = 1(!(!)+
/3̄
,

P*
2=1 1*

%
!1!+2(!)7 Combining these equations

and using 1*%!1!+2(!) = -
001.%

!1!+2(!) we obtain

1(!(!) =
(1# &)
&

1#!(!)#
&4̄

8
- 00

!X

2=1

&*1.%
!1!+2(!)" (11)

which gives, in deviation from steady-state form, the consumption at $ of agent ! as
a function of its current wealth #!(!) and the time path of expected future aggregate
capital

©
1.%

!1!+2(!)
ª!
2=1
. It can be seen that the agent’s decision (!(!) depends on a

su"cient statistic for
©
1.%

!1!+2(!)
ª!
2=1
, given by

1.̂%
! (!) = &

"1(1# &)
!X

2=1

&*1.%
!1!+2(!)7

Thus 1.̂%
! (!) is the time $ discounted sum of the expected future aggregate capital

stock. Together with 1#!(!) the quantity 1.̂%
! (!) is a su"cient statistic for 1(!(!).

The proportionality factor &"1(1 # &) ensures that if 1.%
!1!+2(!) = > for all D =

1" 2" 3" 7 7 7, then 1.̂%
! (!) = >.

24 Furthermore, it is easily seen that under B1, 1.̂%
! (!)

must lie in the interval [#:" :].
23However, our nding of a failure of robust stability under adaptive learning extends to the case in

which heterogeneous adaptive learning rules are permitted, since small perturbations of each agent’s
learning rule leads to a small perturbation of the aggregate path for &!.
24Adaptive learning in nonstochastic models with innite horizons often assumes “steady state

learning” in which forecasts are the same at all horizons. See, for example, Evans, Honkapohja and
Mitra (2009). In the current context this would mean !&#

!$!+% = . at / for all 0, with the value of

. updated over time. Our formulation in terms of !&̂#
! allows for greater generality, while retaining
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From (11) we have

1(!(!) =
(1# &)
&

1#!(!)#
&24̄

(1# &)8
- 001.̂%

! (!)"

and from the linearized household accumulation equation (as in the proof of Theorem
3) we have

1#!+1(!) = &
"11#!(!)# 1(!(!)7

Finally we specify a simple adaptive scheme for the revisions of 1.̂%
! (!) over time:

1.̂%
! (!) = (1# E)1.̂

%
!"1(!) + E1.!"

where 0 ) E * 1 parameterizes how expectations adapt to current information about
the actual capital stock.

We are now in a position to describe the real-time evolution of the system. For
the sake of simplicity, we start from an initial situation, in which the time zero belief
is the same for everybody 1.̂%

0(!) = 1.̂0" so that the system has homogeneous
expectations for all $" together with initial actual .0 at or near .̄ (i.e., 1.0 is near
0)7 The homogeneity assumption allows us to calculate the resulting time-path, but
is also illuminating in the sense that we would hope the system to be stable under
learning if we start near the steady state and with a small commonly-held expected
deviation of expected future capital from the steady state.

By combining the above expressions for 1(!(!) and 1#!+1(!) we obtain 1#!+1(!) =
1#!(!)# F1.̂%

! (!), where

F = #
&24̄- 00

8(1# &)
denotes parameter that determines weak eductive stability in the sense of Section 4.
The system can thus be written as

1.!+1 = 1.! # F1.̂%
! (12)

1.̂%
!+1 = (1# E)1.̂%

! + E1.!+17 (13)

We can now return to the previously suggested denitions of B1-stability under
evolutive (adaptive) learning and give formal denitions.

Denition 5 The equilibrium is B1-stable under adaptive learning for a given 0 )
E * 1 if, for all : ; 0 su!ciently small, the trajectory {.!}

!
!=1 " triggered by (12)-

(13), remains in the cylinder <(:)" dened in B1, for all .0 near .̄ (1.0 near 0)
and all |1.%

012| * :, D = 1" 2" 3" 7 7 7.

a single su"cient statistic that is updated over time. In stochastic models, the time pattern of
interest rates can be estimated and updated using recursive least squares. For technical reasons
this procedure cannot be used in nonstochastic systems. Intuitively, in a nonstochastic equilibrium
the asymptotic lack of temporal variation makes impossible consistent estimation of the time-series
parameters. See Evans and Honkapohja (2001, pp. 152-154).
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Denition 6 The equilibrium is robustly B1-stable under adaptive learning if it is
B1-stable under adaptive learning for all 0 ) E * 1.

If an equilibrium is B1-stable for some nonempty subset of 0 ) E * 1, but is not
robustly B1-stable, then we will say that it is partially B1-stable under adaptive
learning.

Stability obtains under these denitions if, starting near the steady state.0 = .̄,
the real-time evolution of .! stays for all $ in the cylinder <(:)" provided the initial

(homogeneous) expectations satisfy B1, so that
¯̄
¯1.̂0

¯̄
¯ * :.

6.3 The results

The rst result is again an impossibility result.

Theorem 5 The equilibrium cannot be robustly B1-stable under adaptive learning.

Proof: The result can be obtained as a consequence of the argument in Section 5.3.
The trajectory under adaptive learning is continuous in E = 0 (for small E ; 0" the
E#trajectory is close to the E = 0 trajectory under an appropriate metric). Impos-
sibility then follows by continuity as a result of the impossibility of strong eductive
stability in the alternative sense. A second proof, obtained by explicit computation
of the path under adaptive learning, is given in the Appendix.

A striking feature of this result is that the instability arises in the “small gain”
limit of small E, which in the adaptive and least-squares learning literature is usually
viewed as a stabilizing case.25 In our approach, the problem is that in this case the
initial collective belief will be falsied, which we view as a fragility of expectational
coordination.

Our nding of a generic failure of robust stability under adaptive learning is even
stronger than it may appear. Theorem 5 implies that at some time $0 we must
have |1.!0| ; :, but is it nonetheless possible that the discounted sum of future
aggregate capital remains in <(:) for all $, i.e. that |1.̂!| * : for all $ where 1.̂! =
&"1(1#&)

P!
2=1 &

*1.!+2? The answer is again no: from the proof of Theorem 5 it can

25The connection between eductive stability and stability under evolutive (or adaptive) learning
rules, has been discussed, for example, in Evans and Guesnerie (1993), Guesnerie (2002) and Hommes
and Wagener (2010). In short-horizon set-ups, eductive instability is usually reected in adaptive
instability for large gains (here 1 2 1 large). This is seen for the overlapping generations model with
money, under adaptive learning, in Guesnerie and Woodford (1991) and Evans and Honkapohja
(1995), and for the cobweb model under dynamic predictor-selection learning, this connection is
apparent in Brock and Hommes (1997). Theorem 5 is thus particularly unexpected in that it
establishes strong instability under adapative learning for small 1 3 0.

23



be seen that for su"ciently small E there exists a time $1 such that |1.!1 | ; :&(1#&)"1
and hence |1.̂!1 | ; :7 Hence the collective belief associated with B1 can be destroyed
in two senses: actual capital goes away from the cylinder, and the summary statistics
of future capital also goes away from the cylinder.

We next turn to partial B1-stability under adaptive learning. We show rst that
it is necessary for our denition that the system (12)-(13) be asymptotically stable.26

Lemma 3 The equilibrium is B1-stable under adaptive learning for a given 0 ) E * 1
only if the system (12)-(13) is asymptotically stable for that E.

Proof: This follows from standard results for discrete-time linear systems. If the
equilibrium is weakly stable under adaptive learning then the system (12)-(13) must
be stable for all initial conditions. Because the system is linear this implies that its
eigenvalues lie inside the unit circle, which in turn implies asymptotic stability.

Lemma 4 The evolutive system (12)-(13) is asymptotically stable if and only if

F ) 4E"1 # 27

Proof: The system can be written as
µ
1.!+1

1.̂%
!+1

¶
=

µ
1 #F
E 1# E(1 + F)

¶µ
1.!

1.̂%
!

¶
7 (14)

Let G denote the 2 × 2 matrix that governs the dynamics. For asymptotic stability
we need both eigenvalues within the unit circle. Equivalently we require |det(G)| ) 1
and |tr(G)| ) |1 + det(G)|. Since det(G) = 1#E the rst condition is satised for all
0 ) E ) 1. Using tr(G) = 2# E(1 + F) leads to the stated condition.

Lemma 4 implies asymptotic stability for all 0 ) E ) 1 if F ) 2 and for some
0 ) E ) 1 if F & 2. Asymptotic stability implies that |1.!|" |1.̂%

! | * : for $ su"ciently
large. However this is only a necessary condition for B1-stability under adaptive
learning. Based on Section 4 we already know that F ) 1 is a requirement for B1-
stability under adaptive learning, since this gives the condition for .1 to satisfy B1,
for .0 = .̄ and all possible beliefs that satisfy B1, as E $ 1; and in fact for F ) 1
B1-stability under adaptive learning holds for E ) 1 su"ciently close to one.27

26Recall that througout the paper we rule out nongeneric cases. Thus we rule out eigenvalues of
(12)-(13) that lie on the unit circle.
27Based on the proof of Theorem 5 given in the Appendix, it can be shown that 4 2 1 implies

partial eductive stability under adaptive learning. For 1 2 1 near one, the eigenvalues 51' 52 of 6
are real and negative and tend to {0' 4} as 1 $ 1. For !&0 = 0 and !&̂#

0 = . we have !&1 = #4.
and the path of &! is given by

!&! = #(51 # 52)#14.(5!1 # 5
!
2)

from which it can be seen that |!&!| reaches a maximum at / = 1, which implies the stated result.
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We can summarize the results in the following Theorem.

Theorem 6 Under adaptive learning the partial and asymptotic stability properties
of (12)-(13) are as follows:

1. For 0 ) F ) 1" the steady state is B1-stable under adaptive learning for all
E " (H(F)" 1]" where H(F) is an increasing function from (0" 1) onto (0" 1)7

2. For 1 ) F" the steady state does not have partial B1-stability under adaptive
learning, although:

3. For 1 * F ) 2" the learning process is asymptotically stable whatever E.

4. For 2 * F" the learning process is asymptotically stable for E ) 4
2+4
.

This theorem emphasizes the relevance of what we earlier called weak eductive
stability for the understanding of real-time learning. Indeed, the coe"cient F" stressed
in Theorem 1, plays a key role either in the understanding of B1-stability under
adaptive learning or in the analysis of the plausibility of the asymptotic stability
of the adaptive learning process. Whatever the viewpoint taken, a higher F signals
higher expectational fragility. If F ) 1 and if the learning rule reacts quickly enough to
information on the path, i.e. E ; H(F)" where the required reaction speed E is higher
the greater is F, then the trajectory necessarily remains in the cylinder dening the
collective belief. If F ; 1 then the path may eventually move away and falsify the
initial belief, whatever the specic (asymptotically stable or not) adaptive learning
rule used by the agents

Finally, we remark that while for given F the asymptotic stability condition F )
4E"1# 2 is easier to satisfy when E ; 0 is small, it is small values of E that generate
the failure of robust B1-stability under adaptive learning. SmallE ; 0 under adaptive
learning leads to a cumulative movement of aggregate capital away from the steady
state value, which over nite time periods, as E $ 0, track the possible .! paths
deduced by agents in our eductive setting.28

7 A nite-horizon model with capital

In the introduction we stated that the strong instability results of this paper result
from the long planning horizon of agents in the RBC model. This is reected in our
proofs, which show that the violation of the CK assumption arises not because 1.1

28An interesting feature of the lack of robust B1-stability under adaptive learning, which can be
seen in the proof of Theorem 5 given in the Appendix, is that the instability is associated with long
cyclical movements in &!.
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is too large, but because, eventually, 1.! is too large. However, one might still ask
whether strong instability would arise in a model with capital in which agents are
short-lived but the economy is innitely-lived. To answer this question, we contrast
our eductive stability results with those for an overlapping generations model with
capital. This model can also be interpreted as a variant of our model in which agents
are myopic (i.e. they only consider next period as the relevant horizon) instead of
being far-sighted and envisaging the whole future. The previous analysis stresses that
farsighted agents nd it very di"cult to coordinate expectations. The next analysis
shows that indeed myopia makes expectational coordination easier.

7.1 The OLG Model

We stick here to the standard overlapping generations (OLG) terminology, although
we keep in mind the just noted dimension of myopia versus farsightedness in the
agent’s problem.

Consider a two-period OLGmodel with capital, along the lines of Diamond (1965).
Population is constant and normalized to one, and all markets are competitive. Let
!! be an agent born at time $. He is endowed with one unit of labor, which he
supplies inelastically for real wage +!. He then allocates his income between savings
C(!!) = #(!!) and consumption (1(!!). In period $+1, this agent is now old: he rents
his savings for net real return *!+1, consumes the gross return plus prots and dies.
Thus agent !! solves the following problem

max%(!!) {I ((1(!!)" (2(!!))}
s.t. (1(!!) + C(!!) = +! (15)

(2(!!) = (1 + *
%
!+1(!!))C(!!) + J(!!) (16)

Notice that when agent !! makes his savings decision, he does not know the value of
*!+1. Below we assume constant returns to scale production so that J = 0.

The agent !!’s rst-order condition is given by

I51 ((1(!!)" (2(!!)) = &(1 + *
%
!+1(!!))I52 ((1(!!)" (2(!!)) 7 (17)

Equations (15)—(17) may be used to compute the savings decision of agent !! based
on current and expected future factor prices:

C(!!) = C(+!" *
%
!+1(!!))7

Firms hire workers and rent capital in competitive factor markets, and employ
constant returns to scale technology to manufacture goods: K = -(."/); thus prots
are zero and factors prices are given by the respective marginal products. Capital
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is inelastically supplied “in the morning” by the old and depreciation is zero: the
capital accumulation equation is given accordingly by

.!+1 =

Z
C(!!)1!! =

Z
C(+!" *

%
!+1(!!))1!!7

Assuming agents know the relationship between real interest rates and marginal prod-
ucts, and so form expectations of aggregate capital instead of real interest rates, we
have

.!+1 =

Z
C
¡
-$(.!" 1)" -#(.

%
!+1(!!)" 1)

¢
1!!" (18)

where .%
!+1(!!) is agent !!’s forecast of aggregate capital tomorrow. Equation (18)

captures the dynamics of the economy: given aggregate capital today and forecasts
of aggregate capital tomorrow, the actual value of aggregate capital tomorrow can
be determined. It also highlights a key di!erence between the OLG model and the
RBC model: in the OLG model aggregate capital depends only on one period ahead
forecasts; in the RBC model, aggregate capital depends on forecasts at all horizons.

7.2 Common Knowledge and Eductive Stability

To motivate the denition of eductive stability, we consider the following thought ex-
periment at time $ = 0: Let .̄ be a steady state of (18): .̄ = C

¡
-$(.̄" 1)" -#(.̄" 1)

¢
7

Assume that at time $ = 0 every old household has capital #0(!) = .̄. This deter-
mines the wage, and therefore the income, of the young, as given by +̄. Each young
agent !! forecasts capital stock tomorrow, .%(!!), and determines his savings deci-
sion C(+̄" -#(.%(!!)" 1)). He then contemplates the savings decisions of other agents.
We again make the common knowledge CK1:

CK1: It is common knowledge that for some : ; 0 su"ciently small, .! " <(:) )
[.̄ # :" .̄ + :] for all $7

These CK beliefs are assumed held by all agents at all times, i.e. for all !! for all $7

The denitions of weak and strong eductive stability under CK1 are identical to
the denitions given in Sections 4 and 5. We have the following results:

Theorem 7 The steady state .̄ is strongly eductively stable if and only if
¯̄
2s32r

¡
-$(.̄" 1)" -#(.̄" 1)

¢
· -##

¡
.̄" 1

¢¯̄
) 17 (19)

Proof: To see this, rst note that (19) holds if and only if there is L " (0" 1) such
that for small : ; 0, whenever |.%(!!)# .̄| * : it follows that

¯̄
C
¡
-$(.̄" 1)" -#(.

%(!!)" 1)
¢
# .̄

¯̄
) L:7
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CK1 implies in particular that .1 " <(:)7 If (19) holds this implies that C(!̂0) "
<(L:) for all !̂0. Because each agent !0 knows that.%(!̂0) " <(:), he concludes that
C(!̂0) " <(L:) for all !̂0 and hence that .1 " <(L:). Thus it is common knowledge
that .1 " <(L:). Iterating the argument it follows that .1 "

T!
6=1<(L

6:) = {.̄}7
In contrast if (19) fails then for some beliefs compatible with CK1, the aggregate
capital stock at $ = 1 implied by the agents’ optimal plans fails to satisfy .1 " <(:)7

It follows that it is common knowledge that.1 = .̄ if and only if (19) holds. For
agents at time $ = 1 the situation is identical to the situation at time $ = 0. Thus at
$ = 1 agents will conclude that .2 = .̄ and this implies that it will be the case that
.2 = .̄ and this will also be common knowledge for agents at $ = 0. By induction
it follows that the fact that the equilibrium path will be .! = .̄, all $, is common
knowledge.

Note that this stability result is local and can provide a renement criterion in
the case of multiple steady states.

As an exercise for illustrating our results, we specify particular functional forms
and conduct numerical analysis. Assume utility is time separable and takes the con-
stant relative risk-aversion form

I((1" (2) =
1

1# 8
¡
(1",1 + (1",2 # 2

¢
"

for 0 ) 8 ) 1" and assume that production is Cobb-Douglas, -(."/) = .+/1"+.
In this case there is a unique positive steady-state level of capital, and parameter
values for ? and 8 completely characterize the model. For all parameters examined —
? " (0" 1) and 8 " (0" 100) — the steady state is strongly eductively stable.

This example provides a striking contrast to the coordination problems we have
demonstrated for the RBC model with innitely-lived agents.

8 Conclusions

The di"culties of expectational coordination can be ascertained from two sides, the
“eductive” one and the “evolutive” one. In both cases, farsighted agents are sensi-
tive to the whole path of expectations and long-run expectations signicantly matter.
Long-run concerns do unsurprisingly inuence present decisions and future plans. But
the sensitivity to expectations of long-run plans envisaged today is extreme. And this
is at the heart of the impossibility of strong “eductive” stability. Indeed, in the educ-
tive framework there is negative short-run feedback, whichmay be destabilizing, and
positive long-run feedback, which will be destabilizing. That is, an expectation that
aggregate . will persistently exceed .̄ will lead agents to reduce their capital in the
coming period, which, if the e!ect is strong enough, can be destabilizing. But, in
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addition, the optimal dynamic plans of agents call for them to eventually accumu-
late capital in excess of the conjectured level of aggregate .. Hypothetical Common
Knowledge of the equilibrium cannot trigger Common Knowledge of the equilibrium,
whatever the specic characteristics of the economy, an extreme form of expectational
instability which has no counterpart in previously studied models.29 If evolutive learn-
ing is incorporated into the model, so that expectations evolve adaptively over time,
these two sources of instability remain pivotal. If the adaptation parameter is large
then unstable overshooting can arise in the short-run, while if the adaptation rate
is small then low-frequency swings over the medium run will necessarily generate
instability.

29We do not claim however that the di"culty occurs in every model with innitely lived agents.
For example, it would not occur in the world of Lucas (1978), where the assets returns do not depend
upon “extrinsic” uncertainty, but only upon intrinsic uncertainty.
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Appendix
Proof of Lemma 1: These results follow from the envelope theorem. The La-
grangian is given by

/ =
X

!#0

&!

Ã
'((!) + M!

Ã
X

*#0

,%*!
¡
+%!+* # (!+*

¢
+ (1 + *%! ) #!(!)

!!
"

where

,*! =
*Y

"=1

(1 + *!+")
"1"

and ,%*! =
Q*
"=1(1+ *

%
!+")

"1 is the point expectation of ,*! given .̃%(!), and similarly
for +%!+* and *

%
! . The rst result follows easily from

2/

2#0(!)
= M0(1 + *0) :

since .0 = .̄ it follows that (1 + *0)& = 1; and since M0 is the time zero marginal
utility of wealth, M0 = ' 0((0).

To obtain the second result, notice that because production has constant returns
to scale, it follows that &70

&#0
+ &80

&#0
.0 = 07 Now simply compute

2/

2.0
= M0

µ
2+0
2.0

+
2*0
2.0

.0

¶
7

The nal result obtains as follows:

2/

2.%
9 (!)

=
9"1X

!=0

&!M!

Ã
2

2.%
9 (!)

X

*#0

,%*!
¡
+%!+* # (!+*

¢
!

+
2

2.%
9 (!)

&9M9 (+
%
9 + (1 + *

%
9 )#9 (!)) 7

We may compute
2

2.%
9 (!)

(+%9 + (1 + *
%
9 )#9 (!)) = 07

Also, for $ * A # 1, we have

2

2.%
9 (!)

,%*! =

½
#&*+1- 00 $+ C & A
0 else

2

2.%
9 (!)

+%*+! =

½
#.̄- 00 $+ C = A
0 else
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Thus

2

2.%
9 (!)

X

*#0

,%*!
¡
+%!+* # (!+*

¢
= #&9"!.̄- 00 # (+̄ # (̄) - 00&

X

*#9"!

&*

= .̄- 00

Ã
#&9"! + &*̄&9"!

X

*#0

&*

!

= .̄- 00&9"!
µ

&

1# &
*̄ # 1

¶
= 07

Proof of Lemma 2: The individual Euler equation (3) implies

(!(!) = (0(!)
³
&!-,

Q!
*=1(1 + *

%
*(!))

1-,
´
7

Taking logs gives

log((!(!)) = log((0(!)) + ($38) log & + (138)
!X

*=1

log(1 + *%*(!))7

Taking small changes, as argued above, we have

1(!(!)

4̄
=
1(0(!)

4̄
+
&

8

Ã
!X

*=1

1*%*(!)

!

Using the welfare corollary we obtain

0 =
1

4̄

X

!#0

&!1(!(!) =
1

1# &
1(0(!)

4̄
+ (

&

(1# &)8
)

Ã
+!X

*=1

&*1*%*(!)

!
"

where we have used the identity
P!

!=1 &
!P!

*=1 1*
%
*(!) = (1 # &)"1&

P!
*=1 &

*1*%*(!).
The result follows.

Discussion and statement of Lemma A1

Let 1.1(1.̃
%) be the deviation of aggregate capital in period one given an ar-

bitrary beliefs prole 1.̃%. Weak eductive stability implies that if 1.̃% satises B1
then 1.1(1.̃

%) " (#:" :) ) =(:). To establish conditions su"cient for weak eductive
stability, it is useful to identify the beliefs prole(s) 1.̃% that satisfy B1 and that
maximize the magnitude of 1.1(1.̃

%). Some additional notion is helpful: denote by
1Ñ%(E) an agent specic constant beliefs time path: 1.%

! (!) = E for all times $. Abus-
ing notation slightly, we will also use 1Ñ%(E) to indicate a constant and homogeneous
beliefs prole: 1.%

! (!) = E for all agents ! and times $.

31



Lemma A1: Let 1.̃% be any beliefs prole consistent with B1. Then

1.1

³
1Ñ%(:)

´
* 1.1

³
1.̃%

´
* 1.1

³
1Ñ%(#:)

´
7

The proof follows fairly straightforwardly from Lemma 2.

Constructive proof of Theorem 5: We consider 1.0 = 0 and 1.%
0(!) = >, with

> = ±:, for all !. This implies 1.1 = #F>. The dynamics of the system are then
given by (14), which can equivalently be written as

1.!+2 = (2# E(1 + F))1.!+1 # (1# E)1.!

with 1.0 = 0 and 1.1 = #F>. The eigenvalues of the dynamics are complex if
E(1 + F)2 ) 4F, and therefore for E ; 0 su"ciently small and are given by

M" M̄ =
1

2

n
2# E(1 + F)± O

+
E
p
4F # E(1 + F)2

o

or

M" M̄ = *(cos(?)± O sin(?)), where
*2 = 1# E and

* sin ? =
1

2

+
E
p
4F # E(1 + F)27

When the roots are complex the solution meeting the initial conditions is given by

1.! = #
F>

* sin ?
*! sin(?$).

At $ = A = :
2+
we have

1.9 = #
2F>

+
E
p
4F # E(1 + F)2

(1# E):-(4+), where

? = sin"1

s
4FE# E2(1 + F)2

4(1# E)
7

Taking the limit as E ; 0 tends to zero it can be veried that

lim
.%0

1.9 (+(.)) = ±%

where the sign is opposite to the sign of >. It follows that for E ; 0 su"ciently small
we have |1.!| ; : for values of $ near A (?(E)), and hence the equilibrium is not
robustly B1-stable under adaptive learning.
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