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Abstract

We model transitional dynamics that emerge after the adoption of a new

monetary-policy rule. We assume that private agents learn about the new

policy via Bayesian updating, and we study how learning affects the nature of

the transition and choice of a new rule. In our model, uncertainty about the

long-run inflation target matters only slightly, and the bank can always achieve

low average inflation at relatively low cost. Uncertainty about policy-feedback

parameters is more problematic. For some priors, the bank’s optimal strategy

is to adopt an incremental reform that limits the initial disagreement between

actual and perceived feedback parameters. More ambitious reforms can suc-

ceed when priors permit agents to learn quickly enough. While fast learning is

critical for the success of an ambitious reform, full credibility is not.

1 Introduction

We examine the problem of a newly-appointed central bank governor who inherits

a high average inflation rate from the past. The bank has no official inflation target
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and lacks the political authority unilaterally to set one, but it has some flexibility in

choosing how to implement a vague mandate. We assume that the new governor’s

preferences differ from his predecessor and that he wants to disinflate. We want to

find an optimal Taylor-type rule and study how learning affects the choice of a new

policy.

Sargent (1982) studies an analogous problem in which the central bank not only

has a new governor but also undergoes a fundamental institutional reform. He argues

that by suitably changing the rules of the game, the government can persuade the

private sector in advance that a low-inflation policy is its best response. In that case,

the central bank can engineer a sharp disinflation at low cost. Sargent discusses a

number of historical examples that support his theory, emphasizing the institutional

changes that establish credibility. Our scenario differs from Sargent’s in two ways. We

take institutional reform off the table, assuming instead just a change of personnel.

We also take away knowledge of the new policy and assume that the private sector

must learn about it. This is tantamount to assuming that the private sector does

not know the new governor’s preferences.1 Our scenario is more like the Volcker

disinflation than the end of interwar hyperinflations.

In contrast to Sargent’s case studies, the Volcker disinflation was quite costly.

Erceg and Levin (2003) and Goodfriend and King (2005) explain the high cost by

pointing to a lack of transparency and credibility. Erceg and Levin contend that

Volcker’s policy lacked transparency, and they develop a model in which the pri-

vate sector must learn the central bank’s long-run inflation target.2 In their model,

learning makes inflation more persistent relative to what it would be under full in-

formation, increases the sacrifice ratio, and produces output losses like those seen in

the early 1980s. Goodfriend and King claim that Volcker’s disinflation lacked credi-

bility because no important changes were made in the rules of the game. Because the

private sector was initially unconvinced that Volcker would disinflate, the new policy

collided with expectations inherited from the old regime and brought about a deep

recession.

The analysis of Erceg, Levin, Goodfriend, and King is positive and explains why

the Volcker disinflation was costly. In contrast, we address normative questions, viz.

what policy is optimal when the private sector must learn the new policy, and how

does learning alter the central bank’s choice? We study these questions in the context

of a dynamic new Keynesian model modified in two ways. Following Ascari (2004) and

Sbordone (2007), we assume that target inflation is positive. We also replace rational

expectations with Bayesian learning. We assume the central bank follows a simple

Taylor-type rule and chooses its coefficients by minimizing a discounted quadratic

loss function. The private sector learns the new policy via Bayesian updating, and

1We also assume that the public does not know the distribution from which preferences are

drawn. Our perspective on learning is similar to that of Young (2004, pp. xxx-yyy).
2See also Orphanides and Williams (2005) and Milani (2007).
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the central bank takes learning into account when solving its decision problem.

Our approach to learning differs from much of the macro-learning literature, in

particular from the branch emanating from Marcet and Sargent (1989a, 1989b) and

Evans and Honkapohja (2001). Models in that tradition typically assume that agents

use reduced-form statistical representations such as vector autoregressions (VARs)

for forecasting. They also commonly assume that agents update parameter estimates

by recursive least squares. In contrast, we assume that agents update beliefs via

Bayes’s theorem. We do this for two reasons, first because we want agents to retain

what they know about other aspects of the economy’s structure and also because we

want the speed of learning to emerge as an endogenous outcome. The agents who

inhabit our model utilize VARs for forecasting, but their VARs satisfy cross-equation

restrictions analogous to those in rational-expectations models. As a consequence,

there is tight link between the actual and perceived laws of motion (ALM and PLM,

respectively). In our model, agents know the ALM up to the unknown monetary-

policy parameters, and their PLM is the perceived ALM (i.e., the ALM evaluated at

their current estimate of the policy coefficients). Because agents know the functional

form of the ALM, they can use Bayes theorem to update beliefs, efficiently exploiting

information about the new monetary-policy rule.3

For the model described below, the optimal policy and nature of the transition

depend on subtle features of the private sector’s prior. Nevertheless, a number of

robust conclusions emerge. First and foremost, learning makes the transition highly

volatile, so much so that the transition dominates expected loss. For this reason, the

bank’s choice often differs substantially from the full-information optimum. In effect,

the bank is constrained by the private sector’s initial beliefs. Because private agents

learn, the bank can alter their beliefs, but the cost of actuating a big change can be

prohibitive.

The transitional cost depends more on uncertainty about policy feedback para-

meters than on the long-run inflation target. In fact, uncertainty about the inflation

target is not much of a problem. In our examples, the bank always achieves low

average inflation, though sometimes it stops short of zero — the optimum under full

information4 — because the transition cost would be too great. Nevertheless, the

optimum is never far from zero.

Uncertainty about policy feedback parameters is more problematic because it

creates the potential for temporarily explosive dynamics. Locally explosive dynamics

emerge when there is substantial disagreement between actual and perceived feedback

parameters. It follows that one way for the bank to cope is to adopt a policy that

3Our approach detaches learning from bounded rationality. Although the latter might turn out

to be important for understanding disinflation, we think that disentangling the two is helpful for

understanding their respective contributions. This paper takes a step in that direction, focusing on

the role of learning.
4We abstract from the zero lower bound on nominal interest.
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is close to the private sector’s prior. By choosing feedback parameters sufficiently

close to the private sector’s prior mode, the bank can ensure that the equilibrium

law of motion is nonexplosive throughout the transition. More ambitious changes

in feedback parameters can succeed provided that the private sector learns quickly

enough. The equilibrium law of motion might then be explosive for a few periods

before becoming nonexplosive. In this way, the central bank can attempt a more

ambitious reform that achieves better long-run performance at the cost of higher

short-term volatility. Whether an ambitious reform can succeed depends on the speed

of learning. In our examples, the central bank always reaches outside the region

of the policy-coefficient space for which the equilibrium law of motion is initially

nonexplosive. The more rapidly the private sector learns, the farther outside the

central bank can reach. It is critical, however, that private beliefs catch up quickly,

for the transitional cost would be too great if the equilibrium law of motion remained

locally explosive for too long.

The speed of learning depends on subtle features of the private sector’s prior. Ex-

amples are given that support both incremental and ambitious reforms. Importantly,

while fast learning is necessary for the success of an ambitious reform, full credibility

is not. By ‘full credibility,’ we mean that the private sector’s prior is tightly con-

centrated on the bank’s new policy. An ambitious reform can succeed if the private

sector is sufficiently open minded and assigns nontrivial prior mass to a broad range

of policies. Learning takes care of the rest.

2 A dynamic new-Keynesian model with positive

target inflation

We begin by describing the timing protocol, a critical element in learning models.

Then, taking beliefs as given, we describe the model’s structure and our approxima-

tion methods. A discussion of how beliefs are updated is deferred to section 3.

2.1 The timing protocol

Private agents enter period  with beliefs about policy coefficients inherited from

−1. They form expectations and make current-period plans accordingly. At the same
time, the central bank sets the systematic part of its instrument based on information

inherited from − 1. After that, shocks are realized and current-period outcomes are
determined. After observing those outcomes, private agents update their estimates.

They treat estimated parameters as if they were known with certainty, and they

formulate new plans which they carry forward to period + 1.5

5This timing protocol differs slightly from the convention in DSGE models, but it is convenient

because it circumvents a simultaneity between the determination of outcomes, the formation of
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2.2 The model

Our model is a simple dynamic new Keynesian model modified so that target in-

flation is positive and that agents take expectations with respect to subjective beliefs.

Monetary policy is determined in accordance with a Taylor-type rule. Private-sector

behavior is characterized by two blocks of equations, a conventional intertemporal

IS curve and an Ascari-Sbordone version of the aggregate supply curve. The model

features habit persistence in consumption and staggered price setting. This section

presents a log-linearized version of the model. For details on how we arrived at this

representation, see the web appendix A.

2.2.1 Monetary policy

We assume that the central bank commits to a Taylor rule in difference form,

 − −1 = (−1 − ̄) + (−1 − −2) +  (1)

where  is the nominal interest rate,  is inflation,  is log output, and  is

an i.i.d. policy shock. The timing assumption follows McCallum (1999) and fits

conveniently within the timing protocol described above.6 The policy parameters are

 = [̄   
2
 ]
0 where ̄ represents the central bank’s long-run inflation target, 

and  are feedback parameters on the inflation gap and output growth, respectively,

and  is the standard deviation of the policy shock.

We adopt this form because others have shown that it is promising for environ-

ments like ours. For instance, Coibion and Gorodnichenko (2008) establish that a rule

of this form ameliorates indeterminacy problems in Calvo models with positive target

inflation. Orphanides and Williams (2007) demonstrate that it performs well under

least-squares learning.7 More generally, a number of economists have argued that the

central bank should engage in a high degree of interest smoothing (e.g. Woodford

(1999)). Erceg and Levin (2003) contend that output growth, rather than the output

gap, is the appropriate measure to include in an estimated policy reaction function

for the U.S.

expectations, and the updating of beliefs.
6McCallum (1999) contends that monetary policy rules should be specified in terms of lagged

variables, on the grounds that the Fed lacks good current-quarter information about inflation, out-

put, and other right-hand side variables. This is especially relevant for decisions taken early in the

quarter, in accordance with our timing protocol.
7Orphanides and Williams (2007) postulate that neither the agents nor the central bank know

the true structure of the economy, and they replace rational expectations with least-squares learning.

They assume that the central bank cannot observe natural rates and that the bank estimates them

via a simple updating rule. They show that an optimized Taylor rule in difference form dominates

an optimized standard Taylor rule when learning and time-varying natural rates interact.
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We assume that private agents know the form of the policy rule but not the policy

coefficients. At any given date, the perceived policy rule is

 − −1 = (−1 − ̄) + (−1 − −2) +  (2)

where  = [̄   
2
] represents the beginning-of-period estimate of .

The perceived law of motion depends on the perceived policy (2). The actual law

of motion depends on actions taken by the central bank and decisions made by the

private sector. Hence the actual law of motion involves both the actual policy (1)

and the perceived policy (2).

Finally, we assume that the central bank chooses  by minimizing a discounted

quadratic loss function,

 = 0
P

 
[2 + ( − )2 + ( − )2] (3)

taking private-sector learning into account.8 In addition to penalizing variation in

inflation and the output gap, the loss function includes a small penalty for deviations

of the nominal interest rate from its steady state. The central bank arbitrarily sets

 and optimizes with respect to ̄  and 

2.2.2 Approximation methods

We use two approximations when solving the model. As usual, the first-order

conditions take the form of non-linear expectational difference equations. We follow

the standard practice of log-linearizing around a steady state and solving the resulting

system of linear expectational difference equations. However, we expand around the

agents’ perceived steady state in period  rather than around the true steady state.

The true steady state ̄ is the deterministic steady state associated with the

true policy coefficients We define the perceived steady state ̄ as the long-horizon

forecast associated with the current estimate  The private sector’s long-run forecast

̄ varies through time because changes in the central bank’s inflation target have

level effects on nominal variables and also on some real variables (Ascari 2004). Since

perceptions of ̄ change as agents update their beliefs, so do their long-run forecasts.

We chose to expand around ̄ instead of ̄ because the plans of consumers and

firms follow from their first-order conditions, and ̄ better reflects their state of mind

at date . The perceived steady state ̄ converges to the full-information steady

state ̄ if private agents learn the true policy coefficients, but the two differ along the

transition path.

8Gaspar et al (2006) distinguish between an unsophisticated central bank - one that accounts for

the beliefs of the public but not the dynamic process of learning — and a sophisticated central bank

that also takes the learning process into account. Our setting corresponds to the latter assumption.
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Our second approximation involves the assumption that agents treat the current

estimate  as if it were known with certainty. Kreps (1998) calls this an ‘anticipated-

utility’ model. In the context of a single-agent decision problem, Cogley and Sargent

(2008) compare the resulting decision rules with exact Bayesian decision rules, and

they demonstrate that the approximation is quite good as long as precautionary

motives are not too strong. Like a log-linear approximation, this imposes a form

of certainty equivalence, for it implies that decision rules are the same regardless of

the degree of parameter uncertainty. This approximation is standard in the macro-

learning literature.

2.2.3 A new-Keynesian IS curve

As usual, we assume that a representative household maximizes expected utility

subject to a flow budget constraint. We assume that the household’s period-utility

function is

 = log ( − −1)− 
1+



1 + 


where  measures the degree of habit persistence. The first-order condition is a

conventional consumption Euler equation. After log-linearizing, we obtain a version

of the new-Keynesian IS curve

 −  =  −  +∗
¡
+1 −  − (+1 − )− (+1 − ) +  − +1 − 

¢
+  (4)

where  is a transformation of the marginal utility of consumption,

 −  = 1 ( − ) + 2 (−1 −  − ( − )) + 3
∗
 ((+1 − ) + +1 − )  (5)

The parameter  is the steady-state real interest rate,  is the private sector’s long-

run forecast for output, and  and  are shocks.

This equation differs in a number of ways from a standard IS equation. One

difference concerns the choice of the expansion point. As mentioned above, we ex-

pand around the perceived steady state  instead of the actual steady state  In

addition, our anticipated-utility assumption implies that ∗ ̄+1 =  explaining the

appearance of  on the right-hand side of equations (4) and (5).

A second difference concerns the expectation operator ∗  which represents fore-
casts formed with respect to the private sector’s perceived law of motion. In contrast,

the central bank takes expectations with respect to the actual law of motion, which

we denote by 
9

9We assume that the central bank knows the private sector’s prior over  Since the central

bank’s information set subsumes that of the private sector, the law of iterated expectations implies

∗ (+) = ∗ (+) for any random variable + and  ≥ 0 such that both expectations

exist. Because the central bank can reconstruct private forecasts, it also follows that (
∗
 +) =

∗ (+) But + 6= ∗ + 
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Finally, two shocks appear, a persistent shock  to the growth rate of technology,

 =
¡
1− 

¢
 + −1 +  (6)

and a white-noise shock . We introduce the latter so that the private sector faces

a nontrivial signal-extraction problem.

2.2.4 A new-Keynesian Phillips curve

We adopt a purely-forward looking version of Calvo’s (1983) pricing model. A

continuum of monopolistically competitive firms produce a variety of differentiated

intermediate goods that are sold to a final-goods producer. Firms that produce the

intermediate goods reset prices at random intervals. In particular, with probability

1 −  an intermediate-goods producer has an opportunity to reset its price, and

with probability  its price remains the same. Thus we abstract from indexation,

in accordance with the estimates of Cogley and Sbordone (2008). Since pricing and

supply decisions depend on the beliefs of private agents, we again log-linearize around

perceived steady states, obtaining the following block of equations:

 − ̄−1 = ( − ) + 
∗
 (+1 − ̄) +  −1

¡
 − 

¢
(7)

+1
∗
 [( − 1)(+1 − ̄) + +1] +  + 

 = 2
∗
 [( − 1)(+1 − ̄) + +1] (8)

 −  = 1 ( − ̄) + 2
¡
−1 − 

¢
 (9)

This representation differs in four ways from standard versions of the NKPC.

First, a variable

 ≡ log
µZ 1

0

( () )
−



¶
 (10)

that measures the resource cost induced by cross-sectional price dispersion has first-

order effects on inflation and other variables. If target inflation were zero, this variable

would drop out of a first-order expansion.

Second, higher-order leads of inflation appear on the right-hand side of (7). To

retain a first-order form, we introduce an intermediate variable  that has no in-

teresting economic interpretation and add equation (8). This is simply a device for

obtaining a convenient representation.

Third, the NKPC coefficients depend on both deep parameters and estimates of
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target inflation ̄,
10

 = (1 + ̄)

 = (1 + ) [1− (1 + ̄)
−1][1− (1 + ̄)

](1 + ̄)
−1

1 = ̄[1− (1 + ̄)
−1]

2 = (1 + ̄)
−1 (11)

 = [1− (1 + ̄)
−1][1− (1 + ̄)

](1 + ̄)
−1

1 = ̄(1 + ̄)
−1

¡
1− (1 + ̄)

−1¢ 
2 = (1 + ̄)



The deep parameters are the subjective discount factor  the probability 1− that an
intermediate-goods producer can reset its price, the elasticity of substitution across

varieties  and the Frisch elasticity of labor supply 1 As Cogley and Sbordone

(2008) emphasize, the deep parameters are invariant to changes in policy, but the

NKPC coefficients are not. The latter change as beliefs about ̄ are updated.

Finally, we assume two cost-push shocks, a persistent shock  that follows an

(1) process,

 = −1 +  (12)

and a white-noise shock . As before, the latter is included so that agents face a

nontrivial signal-extraction problem.

2.3 Calibration

Parameters of the pricing model are taken from estimates in Cogley and Sbordone

(2008),

 = 06  = 099  = 10 (13)

Notice in particular that we abstract from indexation or other backward-looking

pricing influences. We think this is realistic, as it is supported both by the estimates

in our earlier paper and by micro data.

We calibrate the labor-disutility parameters as

 = 05  = 1 (14)

The parameter  is the inverse of the Frisch elasticity of labor supply — i.e., the

elasticity of hours worked with respect to the real wage, keeping constant the mar-

ginal utility of consumption. The literature provides a large range of values for this

elasticity, typically high in the macro literature and low in the labor literature. Our

calibration implies a Frisch elasticity of 2 and represents a compromise between the

two. We think this is reasonable given that the model abstracts from wage rigidities.

10The NKPC parameters collapse to the usual expressions when ̄ = 0
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The parameter  that governs habit formation in consumption is calibrated to 07, a

value close to those estimated in Smets and Wouters (2007) and Justiniano, Primiceri

and Tambalotti (2010).

With respect to parameters governing the shocks, we abstract from average growth,

setting  = 0 For the persistent shocks  and  we take estimates from Cogley,

Sargent and Primiceri (2009),

 = 04 100 = 012 (15)

 = 027 100 = 05

For the white noise shocks  and  we set

 =  = 0014 (16)

Finally, we adopt a standard calibration for loss-function parameters. We assume

the central bank assigns equal weights to annualized inflation and the output gap.

Since the model expresses inflation as a quarterly rate, this corresponds to  = 116

We also set  to 01, which implies that the weight on fluctuations of the annualized

nominal interest rate is 10% of the weights attached to fluctuations in annualized

inflation and the output gap. The results reported below for economies with learning

are not sensitive to the choice of .

3 Learning about monetary policy

Private agents and the central bank know the model of the economy and the form

of the policy rule, but private agents do not know the policy parameters. Instead, they

must solve a signal-extraction problem to learn about them. If  entered linearly, this

could be done via the Kalman filter. Because  enters non-linearly, however, agents

must solve a nonlinear filtering problem. This section describes how that is done. We

first conjecture a perceived law of motion (PLM) and then derive the actual law of

motion (ALM) under the PLM. After that, we verify that the PLM is the perceived

ALM. Having verified that private agents know the ALM up to the unknown policy

parameters, we use the ALM to derive the likelihood function. Agents combine the

likelihood with a prior over policy parameters and search numerically for the posterior

mode.

3.1 The perceived law of motion

By stacking the IS equations (4) and (5) along with the aggregate supply block

(equations 7-9), exogenous shocks, and perceived monetary policy rule (equation 2),

10



the private sector’s beliefs can be represented as a system of linear expectational

difference equations,

 = 
∗
 +1 + −1 + (17)

where  is the model’s state vector,  is a vector of innovations, and    and

 are matrices that depend on the model’s deep parameters (see the web appendix

for details). These matrices vary with time because they depend on estimates of

the policy coefficients . We conjecture that the PLM is the reduced-form VAR

associated with (17). Using standard arguments, the reduced form can be expressed

as

 = −1 + (18)

where  solves 
2
 − +  = 0 and  = −1 

11

3.2 The actual law of motion

To find the actual law of motion, we stack the IS curve, aggregate supply block,

and shocks along with the actual policy rule. This results in another system of

expectational difference equations,

 = 
∗
 +1 + −1 + (19)

The state and innovation vectors are the same as in (17), as are the matrices  

and  In addition, all rows of  agree with those of  except for the one cor-

responding to the monetary-policy rule. In that row, the true policy coefficients 

replace the estimated coefficients  See the web appendix for details.

According to the timing protocol, subjective forecasts are

∗ +1 =  2
 −1 (20)

After substituting subjective forecasts into (19), we obtain a system of backward-

looking difference equations,

 = (
2
 + )−1 + (21)

Premultiplying both sides by −1 delivers the ALM under the PLM,

 = −1 +  (22)

where

 = −1 (
2
 + ) (23)

 = −1 

11As usual, a solution for  can be computed by solving a generalized eigenvalue problem (Uhlig

1999).
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The equilibrium law of motion is a VAR with time-varying parameters and con-

ditional heteroskedasticity, as in Cogley and Sargent (2005) and Primiceri (2006).

Private-sector beliefs about monetary policy matter for price-setting and consump-

tion decisions. Those beliefs are encoded in    and some elements of 

Outcomes also depend on actions taken by the central bank, which involve the ac-

tual policy rule. That is encoded in other elements of  An intriguing feature of

the equilibrium is that the drifting parameters  have a lower dimension than the

conditional mean parameters () This is qualitatively consistent with a finding

of Cogley and Sargent (2005), who reported that drift in an analog to () is

confined to a lower dimensional subspace. The form of the conditional variance in

(22) differs from their representations, however, so the model disagrees with their

identifying restrictions. Another difference is that the model involves temporary drift

during a learning transition while their VARs involve perpetual drift.

3.3 The perceived ALM is the PLM

To verify that the perceived ALM is the PLM, first notice that the reduced-form

ALM and PLM are both  (1) processes. The conditional variance matrices are

the same,  =  = −1  and the conditional mean matrices solve


2
 − +  = 0 (24)


2
 − +  = 0

After subtracting one from the other and re-arranging terms, we find

 −  = −1 ( − ) (25)

By inspection, one can verify that  and  are identical except for the row cor-

responding to the monetary-policy rule. In that row,  depends on actual policy

coefficients  while  depends on perceived policy coefficients . If we were to

interview the agents in the model and ask their view of the ALM, they would an-

swer by replacing  in  with  thus obtaining  Since the perceived difference

between  and  is zero, the perceived ALM is the PLM. This is true not only

asymptotically but for every date during the transition.

Among other things, this implies that private agents know the ALM up to the

unknown policy parameters. Hence they can use the ALM to form a likelihood

function. Another implication is that the private sector’s forecasts are consistent with

their contingency plans for the future. For instance, for   0 log-linear consumption

Euler equations between periods +  and +  + 1 hold in expectation at 

3.4 The likelihood function

We collect the observables in a vector  = [    ]
0 The other elements

of the state vector allow us to express the model in first-order form but convey
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no additional information beyond that contained in the history of  Using the

prediction-error decomposition, the likelihood function for data through period  can

be expressed as

(|) =Q

=1 (|−1 ) (26)

Since the private sector knows the ALM up to the unknown policy parameters, they

can use it to evaluate the terms on the right-hand side of (26).

According to the ALM,  is conditionally normal with mean and variance
12

|−1() = ()−1 (27)

|−1() = ()
0

0
 

where  is an appropriately defined selection matrix (see the web appendix), ()

is the ALM conditional-mean array evaluated at a particular value of  and ()

is the variance of the innovation vector  also evaluated at  It follows that the

log-likelihood function is

ln (|) = −1
2

P

=1

n
ln ||−1()| + [ −|−1()]

0 −1
|−1()[ −|−1()]

o


(28)

3.5 The private sector’s prior and posterior

Private agents have a prior () over the policy coefficients. At each date  they

find the log posterior kernel by summing the log likelihood and log prior. Because of

our anticipated-utility assumption, their decisions depend only on a point estimate,

not on the entire posterior distribution. Among the various point estimators from

which they can choose, we assume they adopt the posterior mode,

 = argmax
¡
ln (|) + ln ()¢  (29)

Agents take into account that past outcomes were influenced by past beliefs.

They are not recursively estimating a conventional rational-expectations model. By

inspecting the ALM and PLM, one can verify that past values of the conditional

mean |−1() and the conditional variance |−1() depend on past estimates as
well as the current candidate  Past estimates are bygones at  and are held constant

when agents update the posterior mode.13 The estimates are based not just on the

policy rule but also on equations for inflation and output. The agents exploit all

information about  taking advantage of cross-equation restrictions implied by the

ALM to sharpen estimates.

12According to the timing protocol,  and  can be regarded either as beginning-of-period 

estimates or end-of-period − 1 estimates. That is why it is legitimate to use them to calculate the

conditional mean and variance.
13For that reason, whether the estimator can be expressed in a recursive form is unclear.
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4 The central bank’s decision problem

A new governor appears at date 0 and formulates a new policy rule. After observ-

ing the private sector’s prior, the new governor chooses the long-run inflation target

̄ and the reaction coefficients   to minimize expected loss, with the standard

deviation of policy shocks  being set exogenously. The disinflation commences at

date 1.

4.1 Initial conditions

The economy is initialized at the steady state under the old regime. Because we

are interested in a scenario like the end of the Great Inflation, we calibrate the old

regime to match estimates of the policy rule for the period 1965-1979. We assume

that the policy rule had the same functional form as (1) during that period, and

we estimate ̄   and 2 by OLS. The point estimates and standard errors are

reported in table 1.

Table 1: The Old Regime

̄   
0.0116 0.043 0.12 0.0033

(0.013) (0.08) (0.04) (0.01)

Note: Estimates of policy coefficients, 1965-1979. Standard errors in parentheses.

The point estimate for ̄ is 0.0116, implying an annualized target-inflation rate

of 4.6 percent. The reaction coefficients are both close to zero, with the output

coefficient being slightly larger than the inflation coefficient. Policy shocks are large

in magnitude and account for a substantial fraction of the total variation in nominal

interest. Standard errors are large, especially for ̄.

We initialize the state vector at the steady state associated with this policy rule.

This implies 0 = 00116 0 = −00732 and 0 = 00217 where inflation and nominal
interest are expressed as quarterly rates.

4.2 Evaluating expected loss and finding the optimal policy

If the model fell into the linear-quadratic class, the loss function could be evaluated

and optimal policy computed using methods developed by Mertens (2009a, 2009b).

The central bank has quadratic preferences, and many elements of the transition

equation are linear, but learning introduces a nonlinear element. Since that element

is essential, we prefer to retain it and use other methods for evaluating expected loss.

We proceed numerically. We start by specifying a grid of values for ̄  and

 Then, for each node on the grid, we simulate 100 sample paths, updating private-

sector estimates  by numerical maximization at each date. The sample paths are
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each 20 years long, and the terminal loss is set equal to zero, representing a decision

maker with a long but finite horizon. We calculate realized loss along each sample

path and then average realized loss across sample paths to find expected loss. The

optimal rule among this family is the node with smallest expected loss.14

5 A full-information benchmark

To highlight the role of learning, we begin by describing the optimal policy under

full information. When private agents know the new policy, the optimal simple rule

sets ̄ = 0  = 075 and  = 05 Figure 1 portrays a disinflation under this policy.

Recall that the economy is initialized in the steady state of the old regime and that the

disinflation commences at date 1. The figure depicts responses of inflation, output,

and nominal interest gaps, which are defined as deviations from the steady state of

the new regime.15
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Figure 1: Impulse responses when agents are fully informed

The nominal interest rate rises at date 1, causing inflation to decline sharply and

overshoot the new target. After that, inflation converges from below. This rolls back

the price level, partially counteracting the effects of high past inflation. As Woodford

(2003) explains, a partial rollback of the price level is a feature of optimal monetary

14An alternative procedure would be to write down a dynamic program and solve it numerically,

as in Gaspar, Smets, and Vestin (2006, 2009). This is feasible in models with a low-dimensional

state vector, but in our model it runs afoul of the curse of dimensionality.
15Values at date 0 represent the difference between steady states of the old and new regimes.

Inflation and nominal interest gaps coincide because the steady-state real interest rate is the same.
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policy under commitment. Intuitively, a credible commitment on the part of the

central bank to roll back price increases restrains a firm’s incentive to increase its

price in the first place. The optimal simple rule under full information also has this

feature.

The initial increase in the nominal interest rate causes the output gap to fall below

zero. Since inflation and output growth are below target at date 1, the central bank

cuts the interest rate at date 2, damping the output loss and initiating a recovery.

Convergence to the new steady state is rapid, with inflation, output, and interest

gaps closing within 2 years. After 6 periods, inflation is close to its new target,

which is 4.6 percentage points below the old target. The cumulative loss in output

is approximately 3.25 percent. The sacrifice ratio, defined as the cumulative loss in

output divided by the change in target inflation, is approximately 0.7 percent. The

reason why the sacrifice ratio is small under full information is that the model has no

indexation. Although prices are sticky, the absence of indexation means that inflation

is weakly persistent. The absence of indexation also explains why the bank seeks a

substantial rollback in the price level.

6 Optimal simple rules under learning

The nature of the transition and the optimal policy depend on the private sector’s

prior. For that reason, we illustrate how the model works via a series of examples.

6.1 The private sector initially anticipates a continuation of

the old regime

Our first example illustrates a scenario in which the central bank is tightly con-

trained by the private sector’s prior beliefs. Here we assume that private agents

initially anticipate a continuation of the old regime. We calibrate their priors using

the estimates of the policy rule for 1965-1979 reported in table 1, thus ensuring that

the prior encodes information from the period leading up to the Volcker disinflation.

In particular, we assume that agents believe that policy parameters are independent

a priori,

() = (̄)()()(
2
 ) (30)

We also assume that they adopt truncated normal priors for ̄   and a gamma

prior for 2  For ̄   the mean and standard deviation of an untruncated normal

density are set equal to the numbers shown in table 1. We then truncate at zero to

ensure non-negativity and renormalize so that the truncated prior integrates to unity.

For 2  hyperparameters are chosen so that the implied mode and standard deviation

match the numbers in the table.
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Figure 2: A prior based on the old regime

The results are shown in figure 2. Priors for  and  concentrate slightly to

the right of zero, and little prior mass is assigned to values greater than 0.25. On the

other hand, priors for ̄ and 2 are spread out and assign non-negligible probability to

a broad range of values.16 According to this specification, private agents are skeptical

that the central bank will react aggressively to inflation or output, but they are open

to persuasion about ̄ and 2 . That private agents are prejudiced against large values

of  and  is important for what follows.

Figure 3 portrays isoclines for expected loss as a function of ̄  , and 2 

Each panel involves a different setting for ̄, ranging from 0 to 3 percent per annum.

The feedback parameters  and  are shown on the horizontal and vertical axes,

respectively. The standard deviation of the policy shock  is held constant at 0001

in all cases. Expected loss is normalized by dividing by loss under the optimal rule,

so that contour lines represent gross deviations from the optimum. The red and blue

diamonds in the upper right and left panels depict the optimal policy under learning

and full information, respectively.

Regions of low expected loss are concentrated in the southwest quadrant of each

panel, near the prior mode for  and  Expected loss increases rapidly as the

16 ̄ and  are measured in quarterly rates.
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Figure 3: Isoloss contours for example 1
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feedback coefficients move away. Indeed, in the northeast quadrant of each panel,

expected loss is 100 times greater than under the optimal policy. For this example,

the policy that is optimal under full information lies in the high-loss region and is

very far from the optimum.

The reason why expected loss is so large is that the equilibrium law of motion

can be a temporarily explosive process, i.e. one that is asymptotically stationary

but which has explosive autoregressive roots during the transition. The agents in our

model want to be on the stable manifold, but they don’t know where it is. Their plans

are based on , but outcomes depend on  Under conditions ensuring a unique

nonexplosive solution to (17), the eigenvalues of  are on or inside the unit circle.
17

The eigenvalues of however, can be explosive even when those of  are not. Thus,

actions that would be stable under the PLM can be unstable under the ALM. The

matrices  and  differ because of disagreement between the actual policy  and

the perceived policy  (see equation 12). The eigenvalues of  are close to those of

 (and are nonexplosive) when  is close to  Explosive eigenvalues emerge when

there is substantial disagreement between  and  On almost all simulated paths,

the private sector eventually learns enough about  to make explosive eigenvalues

vanish,18 but the transition is highly volatile and dominates expected loss when the

initial disagreement is large and/or learning is slow.

The gray shaded areas in figure 4 depict regions of the policy-coefficient space

for which the eigenvalues of 1 are nonexplosive.
19 The figure is formatted in the

same way as figure 3. The nonexplosive region is similar for all settings of ̄ but

it is sensitive to  and  concentrating near their prior mode. It follows that

the emergence of explosive roots depends more on the feedback parameters than the

long-run inflation target. The central bank can move its inflation target far from

the private sector’s prior mode without generating locally explosive dynamics, but

moving  and/or  far from their prior modes can make the transition turbulent.

In this example, the private sector is strongly prejudiced against large values of

 and . If the bank were to reach far outside the nonexplosive region in figure

4, it would have to fight against that prejudice, and learning would be too slow. For

that reason, the optimal policy puts  and  only slightly outside. The bank can

adjust ̄ more freely, however, thereby achieving low average inflation.

The optimal simple rule for this example sets ̄ = 1 percent per year,  = 015

17A unit eigenvalue is associated with the constant in the state vector.
18Since the private sector in this model uses Bayesian inference and an anticipated utility approach

to decision making, standard results for the convergence of estimates formed by Bayesian decision

makers (see, among others, El-Gamal and Sundaram (1993)) are not directly applicable. Therefore,

we numerically check convergence of the agents’ learning algorithm. In particular, we calculated

deviations of their parameter estimates from the true values after 40 and 80 periods, both across

simulations and across true parameter values. Histograms for those deviations are indeed centered

near 0, and the variances of those distributions shrink as the learning horizon grows larger.
19The jagged boundary is due to the coarseness of our grid.
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Figure 6: Average estimates under the optimal policy
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and  = 03 Figures 5 and 6 portray outcomes under this policy. Figure 5 plots

mean responses of inflation, output, and nominal interest gaps, averaged across 100

sample paths. Figure 6 portrays mean estimates of the policy coefficients, again

averaged across 100 sample paths. The true coefficients are shown as dashed red

lines while average estimates are portrayed as solid blue lines.

As shown in figure 5, the transition is longer and more volatile than under full

information. Inflation again declines sharply at impact, overshooting ̄ and partially

rolling back past increases in the price level. But the response is greater in amplitude

under learning, and inflation oscillates as it converges to its new long-run target.

The transition now takes about five years, with inflation remaining below target for

most of that time. There is also a shallow but long-lasting decline in output. The

output gap reaches a trough of -1.75 percent in quarter 3 and remains negative for

four years. The cumulative output gap during this time is -10.25 percent. Since

inflation fell permanently by 3.6 percentage points, the sacrifice ratio amounts to 2.8

percent of lost output per percentage point of inflation. The sacrifice ratio is four

times larger than under full information, and it is in the ballpark of estimates for the

Volcker disinflation.20

As shown in figure 6, estimates of  converge to its true value after one year.

Rapid convergence of  is crucial for eliminating locally-explosive dynamics. In

this case, beliefs about  converge rapidly because they don’t have far to go. The

bank set  close to its prior mode precisely so that disagreement would not persist.

Estimates of ̄ converge to the true value within 10 quarters, thus centering long-run

inflation forecasts near the bank’s actual target. Learning about  and  is slower

but also less critical.

To illustrate why a more ambitious reform is suboptimal, we examine an alter-

native policy that holds ̄ and  constant but which reacts more aggressively to

inflation, increasing  from 0.15 to 0.45. This policy is located to the right of the

optimum in figures 3 and 4. Figures 7 and 8 depict average outcomes under this rule.

Under this policy, the central bank is fighting against the private sector’s prior,

which assigns low probability to neighborhoods of the true values  = 045 and

 = 03. It follows that a lot of sample information is needed to overcome the

prior. For the sake of intuition, imagine that agents were estimating the policy rule

by running a regression. Because the prior assigns low weight to neighborhoods of the

true feedback coefficients, the likelihood function would have to concentrate sharply

in order to move the posterior there. For that to happen quickly, the right-hand

variables in the regression (inflation and output growth) would have to be highly

volatile. The bank can create a lot of volatility (see figure 7), and those fluctuations

do help the private sector learn (see figure 8), but that volatility is very costly. On

balance, the long-run benefits do not justify the higher transitional costs.

20For instance, Mankiw (2010, p. 398) reports a back-of-the-envelope estimate of 2.8 percent.
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Figure 8: Average estimates when ̄ = 001  = 045 and  = 03
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6.2 The relative importance of uncertainty about feedback

parameters and the inflation target

The next pair of examples clarify the relative importance of uncertainty about the

inflation target and feedback parameters by deactivating one source of uncertainty

at a time. First we examine a model in which ̄ is known while the other policy

coefficients are not. For   and  we assume that the private sector adopts

the same priors as in figure 2. Results for this model are presented in figures 9-11.

Knowledge of ̄ does little to reduce transitional volatility because beliefs about the

other policy coefficients still evolve slowly (see figure 9, which shows ensemble averages

of estimates under the optimal rule). As a consequence, regions of low expected loss

still concentrate near the prior modes for  and  and temporarily explosive paths

still emerge when  and/or  deviate too much from prior beliefs. In fact, the

initial nonexplosive region is identical to that in example 1 (cf. figures 4 and 10), and

isoloss contours are similar (cf. figures 3 and 10).
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Figure 9: Average estimates under the optimal policy when ̄ is known
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Figure 10: Isoloss contours when ̄ is known
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Figure 11: Nonexplosive region of 1 when ̄ is known
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Next we deactivate uncertainty about   and  and studying a version of

the model in which ̄ is the only unknown policy coefficient.21 For ̄ we assume that

the private sector adopts the same prior as in figure 2. Results for this model are

depicted in figures 12 and 13. Because the feedback parameters are known, the initial

nonexplosive region expands to fill the entire policy-coefficient space. Since the ALM

is nonexplosive for all policies, the model has high fault tolerance with respect to rules

far from the optimum, and the expected-loss surface is much flatter. Furthermore,

the private sector learns the inflation target quickly. For these reasons, the model

behaves much as it does under full information. The optimal policy is similar, and

impulse response functions resemble those shown in figure 1.

It follows that uncertainty about feedback parameters is more important than

uncertainty about the long-run inflation target. To the extent that a central bank

can influence the private sector’s prior, sending clear and credible signals about 

and  should be its first priority.
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Figure 12: Nonexplosive region and isoloss contours when   and  are known

21This scenario is analogous to the learning problem in Erceg and Levin (2003). Our model differs

from theirs in a number of other ways, so this exercise should not be interpreted as an attempt to

replicate their analysis.
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Figure 13: Average estimates and responses under the optimal policy when  

and  are known

6.3 Mixture priors

A key element of the previous examples is that the prior assigns very low proba-

bility to values of  and  above 0.25. In other words, private agents are strongly

prejudiced against policies the new governor would adopt under full information. Our

final example alters the prior in a way that preserves the prior mode (hence the ini-

tial estimate of feedback coefficients) but which makes agents less skeptical about

the prospects for a change in policy. By making agents less skeptical a priori, we

can accelerate the speed of learning. We want to see how far we have to go in this

direction to support an ambitious reform.

We do this by creating a family of mixture priors. In particular, we imagine that

agents enter date 0 with beliefs about the old regime () that are the same as

in example 1. But instead of assigning probability 1 to that prior, we assume they

expect the central bank to continue the old regime with probability 1 −  and to

switch to something else with probability  Their beliefs about a new regime are

encoded in a conditional prior () The marginal prior is a mixture of the two

conditional priors,

() = (1− )() + () (31)

where  measures the public’s beliefs about the prospects for change. A value close

to 0 means that the public is highly skeptical and weighs its past experience heavily,

while a value close to 1 means that the private sector heavily discounts the past and

looks forward to something new. The previous examples set  = 0 Now we consider

a family of examples in which  = 01 03 05 and 07 respectively. In the text, we

present results for the case of  = 03 Results for the other scenarios are reported in

an appendix.

For () we adopt the same functional forms as for () and we calibrate it

so that it is loosely centered on policies that would work well under full information.
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The details are recorded in table 2. Abstracting from the truncation at zero, the

conditional prior mean for ̄ is 2 percent per year, and a conditional 95 percent

confidence band ranges from 0 to 4 percent. Similarly, the conditional prior means

for  and  are 0.5 with conditional confidence bands of plus or minus 0.5. The

conditional mode for  is 0.001, and its standard deviation is 0.001.

Table 2: Conditional Prior, ()

̄   
Mean 0005 05 05 0001

Standard deviation 00025 025 025 0001

A mixture prior is depicted in figure 14. The components () and () are

depicted as solid blue and dashed green lines, respectively, and a mixture with  = 03

is shown as a dotted red line. The mixture is broadly similar to (), but it differs

in two respects that matter. First, the prior mode for ̄ is shifted to the left, near

the mode for (̄). More importantly, the upper tails for the feedback parameters

are fatter than those of () For  = 03 () still assigns low probabilities

to large values of  or  but those probabilities are orders of magnitude larger

than under () Thus, although agents remain skeptical that the bank will react

aggressively to inflation or output growth, they are less strongly prejudiced against

that possibility.
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Figure 14: Mixture prior
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These changes become more pronounced as  increases, but even for  = 07 the

prior modes for  and  are the same as in the first example. Hence the initial

disagreement about feedback parameters remains the same. Again, what differs is

the shape of the upper tails. The priors for  and  are less tightly concentrated

on old-regime values and assign greater probability to a broad range of possibilities.

Because the priors for  and  are less tightly concentrated on old-regime values,

incoming data are weighed more heavily and agents learn more quickly, allowing the

central bank to move farther away from the prior mode.

Figure 15 depicts the initial nonexplosive region and isoloss contours for a mixture

prior with  = 03 Since the initial disagreement about feedback parameters is the

same, so is the region of the policy-coefficient space for which the ALM is initially

nonexplosive. Because learning is more rapid, however, locally-explosive dynamics

vanish more quickly, enabling the bank to implement more ambitious reforms. Be-

cause agents learn more rapidly, the conomy more tolerant of policies far from the

prior mode, and the expected loss surface is much flatter. In fact, a wide range of

policies surrounding the optimum are almost as good. Expected loss still rises as 

moves to the right of the optimum, but it increases by a factor of 2.5 or less, not by

a factor of 100. No catastrophes emerge in these simulations.

ψ
y

π = 0

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

ψ
y

π = 0.01

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

1.
05

1.2

1.
2

1.4

1.4

1.
4

1.
6

1.6

1.6

1.8

1.8

1.8

2

2

2

2.1

2.1

2.1

2.2

2.2

2.2

2.4

2.4

2.4

2.6

2.6

2.6

5

5

ψ
y

ψπ

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

1.
2

1.2

1.2

1.3

1.3

1.3

1.4 1.4

1.4

1.5

1.5

1.75

1.75

2

2

2.5

2.5

5

ψπ

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

FI

Learning

Learning

FI

Figure 15: Nonexplosive region and isoloss contours, mixture prior with  = 03

28



Figure 16 illustrates the speed of learning. As before, the true policy coefficients

are shown as dashed red lines while ensemble averages of posterior estimates are de-

picted as solid blue lines. The private sector learns quickly, with estimates converging

to neighborhoods of the true coefficients within one year. Learning is faster because

the private sector’s prior assigns greater probability to neighborhoods of the new

policies. As a consequence, less sample information is needed to identify the new

rule.
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Figure 16: Average estimates under the optimal policy, mixture prior with  = 03

Finally, figure 17 portrays average responses of inflation, output, and nominal

interest gaps under the optimal policy. As before, the initial disagreement between

actual and perceived policies makes the ALM locally explosive. The initial responses

are therefore large in magnitude. The disagreement vanishes quickly, however, and

the ALM becomes locally stable, causing volatility to decline. Inflation again falls

sharply at impact, overshoots the new long-run target, and converges from below.

Convergence is rapid, with gaps vanishing after 8 quarters. A mild recession occurs,

resulting in a sacrifice ratio of 1.3 percent of lost output per percentage point of

inflation.
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Table 3 summarizes results for the other mixture priors, showing the optimal

simple rule in each case and reporting the sacrifice ratio and expected loss relative

to what could be achieved under full information.22 Recall that when  = 0 the

bank’s concerns about explosive volatility limit its adjustment of  and expected

loss is more than twice as high as under full information. Worries about explosive

volatility become less pressing as  increases, but expected loss remains 1.6 to 2 times

higher than under full information because learning amplifies initial volatility. The

more rapidly agents learn, the sooner the initial period of high volatility ends. Thus

expected loss declines with  The sacrifice ratio also declines with , falling from

2.8 percent when  = 0 to 0.7 percent when  = 05 or 07 Ambitious reforms can

succeed at relatively low cost when the private sector’s prior is more diffuse.

Table 3: Optimal Simple Rules

̄   Relative Loss Sacrifice Ratio

Full information 0 0.75 0.5 1 0.7 percent

 = 0 0.01 0.15 0.3 2.2 2.8 percent

 = 01 0.01 0.25 0.5 2.0 1.6 percent

 = 03 0 0.45 1.1 1.6 1.3 percent

 = 05 0 0.55 0.5 1.6 0.7 percent

 = 07 0 0.55 0.5 1.6 0.7 percent

Note:  = 0001 in all cases.

Two aspects of these examples are noteworthy. The first is that although fast

learning is essential for an ambitious reform, full credibility is not. By ‘full credibility’

22Details can be found in the appendices.
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we mean that the private sector’s prior is tightly concentrated on the optimum. This

would obviously promote fast learning, but it is not necessary. If private agents are

sufficiently open minded about potential reforms and assign nontrivial prior mass

to a range of policies, they will be able to learn quickly, and that is enough for an

ambitious reform to succeed. What is interesting is that this happens for mixture

weights well below unity.

A second and related point is that outcomes depend on subtle features of the

private sector’s prior. The prior modes for  and  are the same as when  = 0.

What differs is the shape of the tails. That the upper tails are fatter accelerates

learning and allows the central bank to react more aggressively to inflation and output

growth. It follows that knowing the prior mode would not be enough for the central

bank to choose between the policies recommended here and in example 1. The bank

would also have to know the shape of the tails. As  declines toward 0, the economy

becomes less fault tolerant, making it more important for the bank to know the entire

shape of the prior.

7 Conclusion

This paper models the transitional dynamics that emerge after the adoption of a

new monetary-policy rule. We assume that private agents must learn about the new

policy, and we study how learning affects the nature of the transition and choice of

a new rule. Our analysis extends that of Erceg and Levin (2003) in two ways, by

incorporating uncertainty about feedback parameters as well as the long-run inflation

target and by considering the choice of an optimal simple rule when private agents

learn.

Because policy feedback parameters are unknown, the agents who inhabit our

model face a nonlinear signal-extraction problem that we solve by applying Bayes’

theorem. A Bayesian approach has a number of attractive features. For instance, we

show that the PLM is the perceived ALM at every date. Our equilibrium therefore

lies between that of a conventional rational-expectations model in which the ALM

and PLM always coincide and that of a least-squares learning model in which the

ALM and PLM might converge, but only asymptotically. Because the PLM is the

perceived ALM, the private sector’s forecasts are consistent with its contingency plans

for the future.

For some priors, the bank’s optimal strategy is to adopt an incremental reform

that limits the initial disagreement between actual and perceived policies. More

ambitious reforms can succeed when priors permit agents to learn quickly enough.

Examples are given of each. Because the optimal policy is sensitive to the private

sector’s prior, we cannot give an unequivocal answer to the policy-design question.

For that reason, we view our contribution more as a suggestion about how to analyze
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the problem than as a definitive description of the optimal strategy. Nevertheless,

the following policy lessons seem to be robust.

• The equilibrium law of motion can have temporarily explosive dynamics during
the transition. For this reason, the transition often dominates expected loss.

• Uncertainty about the inflation target is a secondary issue. In our examples, the
bank can always achieve low average inflation at relatively low cost. Concerns

about the transitional cost can rationalize a positive inflation target, but the

optimum is never far from zero.

• Uncertainty about feedback parameters is more important because this is what
creates the potential for temporarily explosive dynamics. Coping with uncer-

tainty about feedback parameters is the bank’s main challenge.

• An ambitious reform can succeed without being fully credible provided that

the private sector is sufficiently open minded. If private agents place nontrivial

prior mass on a broad range of policies, learning will take care of the rest.

In some respects, our analysis points toward ‘open-mouth’ policies for affecting

the private sector’s prior (e.g. Guthrie and Wright 2000). Our model is capable of

analyzing the consequences of alternative priors, but we do not have a theory of how

priors are determined or how a central bank might influence them. Our approach

would have to be extended in that direction to analyze open-mouth policies.

Our analysis also leaves open a number of other interesting questions. In ongoing

research, we are studying alternative forms of the policy rule such as monetary-

aggregate targeting as well as the robustness of policy prescriptions with respect

to alternative forms of learning. Since outcomes depend on subtle features of the

private sector’s prior, thinking about how to design surveys which elicit that infor-

mation is important. Withdrawing the assumption that the central bank can observe

the private sector’s prior would also be interesting. Adding real-time data noise is

relevant and would affect the private sector’s signal-extraction problem. Last but not

least, we would eventually like to consider models in which the central bank chooses

sequentially, and the private sector learns about a moving target.
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Appendices
(Not Intended for Publication)

A The model

The demand side of the model consists of equilibrium conditions of a representative

household for the optimal choice of consumption and hours of work. The household

maximizes expected discounted utility

0

∞X
=0


µ
log ( − −1)− 

1+


1 + 

¶
 (32)

subject to a flow budget constraint

 (+1+1) +  =  + +

Z 1

0

Ψ() (33)

where  measures a degree of internal habit persistence,  is a subjective discount

factor and  is consumption of the final good, with price  The specification of the

period utility — separable in consumption and hours and logarithmic in consumption

— guarantees the existence of a balanced growth path. The variable

 =

Z
 ()  (34)
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is an aggregate of the number of hours supplied by the household to firms in the

intermediate-goods sector, and  is the economy-wide nominal wage Intermediate

goods producers earn profits amounting to
R 1
0
Ψ() which they rebate to the house-

hold. The variable +1 is the state-contingent value of the portfolio of assets held

by the household at the beginning of period +1 and +1 is a stochastic discount

factor.

The marginal utility of consumption Ξ is

Ξ =
1

 − −1
− 

1

+1 − 

 (35)

and the first order condition for the choice of consumption is

Ξ = 

∙
Ξ+1



Π+1

¸
 (36)

where  = [(+1)]
−1 is the gross nominal interest rate, and Π is the gross

inflation rate: Π = −1. The first order-conditions for labor supply is

 = 
  (37)

were  ≡  is the real wage. Because there is no capital or government, the

aggregate resource constraint is simply  = 

To eliminate the non stationarity induced by the technological progress Γ we

express (35) and the equilibrium condition (36) as23 respectively

Ξ
 =

1


 − 

−1
Γ−1
Γ

− 

1


+1

Γ+1
Γ
− 



 (38)

and

Ξ
 = 

"
Ξ
+1

µ
Γ+1

Γ

¶−1


Π+1

#
 (39)

where 
 ≡ Γ 


 ≡ Γ,  = ΓΓ−1 and Ξ

 ≡ ΞΓ. Similarly, the first

order condition for labor supply can be written as


 = 

 

  (40)

where 
 ≡ Γ is the productivity adjusted real wage, and the aggregate resource

constraint becomes 
 =  

  Further, imposing market clearing, equation (38) can

be rewritten as

Ξ
 =

1

 
 −  

−1
Γ−1
Γ

− 

1

 
+1

Γ+1
Γ
−  



 (41)

23The nominal interest rate is affected by the non-stationarity of inflation, but its ratio to inflation

(and trend inflation) is stationary.
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The log-linearization of the equilibrium condition (41) and (39) gives the dynamic

 block. To derive these equations, we need a further transformation of variables

to eliminate the non-stationarity induced by trend inflation, so we define eΞ = Ξ





and f 
 =  

 


 (with steady state values
eΞ = −

− and f 

= 1) With this

transformation of variables, we can log-linearize the  equation to obtain

bΞ = c 
 +

³bΞ+1 − c 
+1 − b+1 − b+1 +  − +1 − 

´
(42)

where bΞ ≡ log eΞeΞis defined as follows

bΞ = 1
c 
 + 2

h³c 
−1 − b´+ 

³c 
+1 + b+1 + b+1´i  (43)

The hat variables are, as usual, log deviations from steady state: c 
 = log  

 −
log  

  = log b = log  − log   = log  ≡  
 

−1 and  is the

steady state real interest rate.24

Equations (4) and (5) in the main text are a transformation of (42) and (43),

where we adopt a simplified notation, setting  ≡ log eΞ  ≡ log eΞ  ≡ log  
 

 ≡ log  
 and −1 ≡ ∗   ≡ ln  and  ≡ ln  Furthermore, we replace

rational expectations by learning and trend inflation by agents’ perception with date

−1 information, −1. Finally, since ∗ b+1 = 0 the term is suppressed. All steady
state variables which are functions of trend inflation are similarly denoted with an

overbar and subscript − 1.
The equilibrium condition (40) is used in the next section to substitute out the

real wage in the marginal cost expression of the supply side of the model.

A.1 The supply side

The supply side of the model consists of equilibrium conditions for a continuum of

monopolistically competitive firms that produce intermediate goods and a final-good

aggregating firm. These equilibrium conditions determine the dynamics of inflation

in the model.

The final-good producer combines  () units of each intermediate good  to pro-

duce  units of the final good with technology

 =

∙Z 1

0

 ()
−1
 

¸ 
−1

 (44)

24Note the term Π+1 is stationary, and we denote its (log) steady state (which is equal to the

steady state value of the ratio of nominal interest rate to trend inflation) by . This can be seen by

dividing through by Π which gives
Π

(Π+1Π+1)(Π+1Π)
=

Π+1 whose steady state we denote by
 and  ≡ log
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where  is the elasticity of substitution across intermediate goods. The final good

producer chooses the intermediate inputs to maximize its profits, taking the price of

the final good  as given, determining demand schedules

 () = 

µ
 ()



¶−
 (45)

The zero-profit condition then determines the aggregate price level

 ≡
∙Z 1

0

 ()
1−



¸ 1
1−

 (46)

Intermediate firm  hires  () units of labor of type  on an economy-wide com-

petitive market to produce  () units of intermediate good  with technology

 () = Γ ()  (47)

where Γ is an aggregate technological process.

Firms can reset prices at random intervals (we assume a Calvo price-setting mech-

anism), and we denote by 1− the probability that an intermediate-goods producer

has an opportunity to reset its price. The first order conditions of the optimal price-

setting problem25 and the evolution of aggregate prices jointly determine the dynamics

of inflation in the model.

In log-linear form, the supply side can be described by a pair of equations, known

as a new Keynesian Phillips curve26

 − ̄−1 = e−1( −−1) + −1
∗
 (+1 − ̄−1) (48)

+1−1
∗
 [( − 1)(+1 − ̄−1) + +1] +  + 

 = 2−1
∗
 [( − 1)(+1 − ̄−1) + +1]

where e−1 = −1 (1 + ) and the other parameters are defined in expression (11)

in the main text.

A.1.1 Marginal costs, output and price dispersion

In order to write the NKPC as a relation between inflation and output, we solve

for marginal cost  as function of aggregate output. The average marginal cost is

the real wage corrected by productivity

 = 
  (49)

25For simplicity we assume away wedges between the individual firm marginal cost and aggregate

marginal costs.
26For further detail on the derivation of this Phillips curve, see Cogley and Sbordone (2008). The

curve here in that the transformation of inflation into a stationary variable is obtained by dividing

current (gross) inflation by perceived (rather than actual) trend inflation. The log-linearization is

therefore defined around a point where perceived trend inflation and actual inflation are the same.
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where, from equilibrium condition (40) 
 is function of aggregate hours. These are

obtained by aggregating hours worked in each firm:

 ≡
Z 1

0

 ()  =

Z 1

0

 ()

Γ
 =  



Z 1

0

µ
 ()



¶−
 =  

 ∆ (50)

where we denoted by∆ the following measure of price dispersion: ∆ ≡
R 1
0

³
()



´−


We can then write aggregate output as function of aggregate hours and a measure of

price dispersion:

 
 =



∆

 (51)

∆ measures the resource cost induced by price dispersion in the Calvo model, in

equilibrium. One can show that ∆ ≥ 1, which implies that in equilibrium more

hours are needed to produce the same amount of output (indeed, labor productivity

is the inverse of the price dispersion index.) Price dispersion is therefore always a

costly distortion in this model. By substituting expressions (40) and (50) in (49) we

get

 = 
 


 = ∆

 (

 )

1+
 (52)

This expression shows that price dispersion creates a wedge between marginal costs

and output. Substituting out marginal cost, we derive below the log-linear NKPC

where both aggregate output and price dispersion are driving variables. Before doing

that, we discuss the values of the variables in steady state.

A.1.2 Steady-state relations

From the definition of ∆ we can derive that
27

∆ = (1− ) (e)− + Π
∆−1

where for ease of notation we indicate by e the relative price of the firms that
optimizes at : e ≡ ∗ () . Then substituting the value of e from the evolution

of aggregate prices

e = ∙1− Π−1


1− 

¸ 1
1−

 (53)

we get

∆ = (1− )

µ
1− Π−1



1− 

¶− 
1−
+ Π

∆−1 (54)

27This derivation follows Schmitt-Grohe and Uribe (2006, 2007).
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From this expression we then obtain a relationship between price dispersion and trend

inflation in steady state:

∆ =
1− 

1− Π




Ã
1− Π

−1


1− 

! 
−1

 (55)

We can now use the relation between steady state marginal cost and steady state

inflation, namely:

 =
 − 1


³
1− Π

−1


´ 1
1−

(1− )
1

1−

"
1−  

¡
Π

¢
1−  

¡
Π

¢−1
#
 (56)

together with (52) evaluated in steady state,

 = 
¡
 



¢1+
∆



  (57)

to obtain a relationship between inflation and output that should be satisfied in steady

state. Equating (56) and (57), substituting ∆ from (55) and rearranging, we get

 
 =

⎡⎢⎢⎢⎢⎣
−1



1−Π−1

 1
1−

(1−)
1

1−

∙
1− (Π)



1− (Π)
−1

¸


µ
1−
1−Π



³
1−Π−1



1−

´ 
−1
¶

⎤⎥⎥⎥⎥⎦
1

1+

(58)

which can be interpreted as a long-run Phillips curve relationship between inflation

and output.

A.1.3 Log-linearizations

We start from a log-linear NKPC with marginal cost as forcing variable, and want

to transform it into a log-linear Phillips curve in output deviations from steady state:f 
 ≡  

 

.

To do that we only need to obtain the log-linearization of (52) around  (as

defined in (57)), and substitute it into the marginal cost NKPC. From (52) we get

c = (1 + )c 
 +  b∆ (59)

For the log-linearization of (54), we first let b∆ = log∆∆ (the non-stationarity

of Π implies that ∆ is also non-stationary, but its ratio to trend is by definition
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stationary).28 Then we log-linearize the resulting expression around a steady state

where e∆ = eΠ = 1, obtaining
b∆ ' 1bΠ + 2

³b∆−1 − b∆

´
 (60)

where the parameters 1 and 2 are defined in the last two rows of (11) in the main

text. They are time-varying because they depend on trend inflation. In the main

text, for analogy with the other equations, for b∆ we use the notation  − −1

B Arrays for structural representations

The state vector is  =
£
      −1  1 

¤0
 The matrices

entering the PLM are defined as:

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −  −1 − 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 −1
0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 −1 2 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 (61)

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

 + 1( − 1) 1 0 0 0 0 0 0 0 0

2( − 1) 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 −1
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 2 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(62)

28In first order approximations around a steady state with zero inflation, the variable ∆ can

be ignored (the log deviation b∆ would be a first order process with no real consequences for the

stationary distribution of the other endogenous variables). But price dispersion must be taken into

account if one analyzes economies with trend inflation and imperfect price indexation, as the one in

this paper. (see Schmitt-Grohe and Uribe (2007)).
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 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0  0

0 0 0 0 0 0 0 0  0

0 0 2 0 0 0 0 0  0

0 0 0  0 0 0 0 0 0

0 0 0 0 0 0 0 0  0

0 0 0 0 0  0 0  0

0 0 0 0 1 0 0 0 0 0

 0 0 0  0 − 1 −̄ 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 2 0 0 0  0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 (63)

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 (64)

The expressions for the intercepts in  are

 = [1−  − 1( − 1)]̄ −  −   (65)

 = −2( − 1)̄
 = (1− 2) −1 − 1̄

 =  − 

 =
¡
1− 

¢


 =  − (1 + (1 + )2) + 2(1− )

where  and  are private-sector estimates respectively of steady-state output and

trend inflation, and  and  are the steady-state real-interest rate and real-growth

rate, respectively.
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The matrices   and  also appear in the ALM. However,  is replaced by

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0  0

0 0 0 0 0 0 0 0  0

0 0 2 0 0 0 0 0  0

0 0 0  0 0 0 0 0 0

0 0 0 0 0 0 0 0  0

0 0 0 0 0  0 0  0

0 0 0 0 1 0 0 0 0 0

 0 0 0  0 − 1 −̄ 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 2 0 0 0  0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 (66)

The selection matrix  used to evaluate the likelihood function is defined as

 =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎦  (67)

C The relative importance of uncertainty about

feedback parameters and the inflation target

The inflation target is known, but feedback parameters are not Figures

A1-A4 depict results for a model in which ̄ is known, while   and  are not.

Priors for the latter are the same as in figure 2.
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Figure A1: Isoloss contours
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Figure A2: Nonexplosive region of 1
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Figure A3: Average estimates under the optimal policy
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Feedback parameters are known, but the inflation target is not Figures

A5-A8 depict results for a model in which   and  are known, while ̄ is not.

Priors for the latter are the same as in figure 2.
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Figure A5: Isoloss contours
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Figure A8: Average responses under the optimal policy

D Additional results for models with mixture pri-

ors
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Figure A9: A family of mixture priors
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Figure A10: Isoloss contours
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Figure A13: Average estimates under the optimal policy
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Figure A14: Average responses under the optimal policy
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Figure A15: Isoloss contours

ψ
y

ψπ

π = 0

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

ψ
y

ψπ

π = 0.01

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

ψ
y

ψπ

π = 0.02

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

ψ
y

ψπ

π = 0.03

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1
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Fugure A17: Average estimates under the optimal policy
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Figure A18: Average responses under the optimal policy
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Figure A19: Isoloss contours

ψ
y

π = 0

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

ψ
y

π = 0.01

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

ψ
y

ψπ

π = 0.02

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

ψ
y

ψπ

π = 0.03

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

Learning FI

Figure A20: Initial nonexplosive region
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Figure A21: Average estimates under the optimal policy
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Figure A22: Average responses under the optimal policy
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