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Introduction

� In microfounded models we assume agents are rational in two ways:
� they form forecasts optimally (they are endowed with RE)
� they make choices by maximizing their objective function

� The critique of Rational Expectations (RE) � that it is often implausibly
demanding � is well-known. The adaptive (e.g. least-squares) learning
approach is a natural bounded-rationality response to this critique.

� In our view the assumption that agents are endowed with the solution to
their dynamic optimization problem is equally implausible: just as it may
take time for agents to learn to form RE, so it may take time for them to
learn to optimize.



� Thus boundedly optimal decision-making is a natural complement to bound-
edly rational forecasting.

� Our implementation of this, which we call shadow-price learning, comple-
ments and extends least-squares learning in expectation formation.

� Our central result is to show that by using shadow-pice learning, agents
can learn over time to solve their dynamic stochastic optimization problem.



Literature on agent-level learning and decision-making

� Cogley and Sargent (IER, 2008). Bayesian decision-making in a permanent-
income model. Even in a �nite planning model with 2-state Markov income
process, the optimal decision rule requires considerable sophistication.

� Adam and Marcet (JET, 2011). �Internal rationality.� Agents solve their
dynamic optimization problem for a given system of probability beliefs on
future paths of variables exogenous to their decisions. For risk-neutral
application agents make decisions based on one-step-ahead forecasts.



� Preston (IJCB, 2005). Using the �anticipated utility�approach, agents fully
solve their optimal decision-making problem at t, given their time t forecast
at of the whole futiure path of variables exogenous to them, but ignoring
that their estimated model will change over time. Examples include Eusepi
and Preston (AEJmacro 2010) and Evans, Honkapohja and Mitra (JME,
2009).

� Evans and Honkapohja (ScandJE, 2006) and Honkapohja, Mitra and Evans
(2013). �Euler-equation learning.� Agents make decisions based on their
Euler equation, using one-step ahead forecasts of the relevant varibles in-
cluding their own next-period decisions, e.g., rates of return and their own
future consumption. See also Howit and Özak (2009).



� Watkins (1989). Q-learning. Based on the Bellman�s equation, agents
estimate and update the �quality value�of state-action pairs. Typical ap-
plications are to models with �nite states and actions.

� Marimon, McGrattan and Sargent (JEDC, 1990) use a related approach
based on classi�er systems. Lettau and Uhlig (AER, 1999) incorporate
rules of thumb into dynamic programming using classi�er systems.



Shadow-price learning

We now introduce our approach �Shadow-price (SP) learning.

Consider a standard dynamic programming problem

V (x0) = maxE0
X
t�0

�tr(xt; ut)

subject to xt+1 = g(xt; ut; "t+1)

and �x0 given, with ut 2 �(xt) � Rm and xt 2 Rn. Our approach is based on
the corresponding Lagrangian

L = E0
X
t�0

�t
�
r(xt; ut) + �

0
t (g(xt�1; ut�1; "t)� xt)

�
:



Our starting point is the FOCs

�t = rx(xt; ut)
0 + �Etgx(xt; ut; "t+1)

0�t+1
0 = ru(xt; ut)

0 + �Etgu(xt; ut; "t+1)
0�t+1:

In SP-learning we replace �t with ��t , the perceived shadow price of the state
xt, and we treat these equations as behavioral.

To implement this we need forecasts. In line with the adaptive learning literature
xt+1 = g(xt; ut; "t+1) is assumed unknown and is approximated by

xt+1 = Axt +But + C"t+1;

where estimates of A;B;C are updated over time using recursive LS. Agents
must also forecast ��t+1. We assume that they believe the dependence of �

�
t

on xt can be approximated by

��t = Hxt + �t,

where estimates of H are updated over time using RLS.



SP-learning is thus speci�ed by solving simultaneously the ut FOC and the
Êt�

�
t+1 forecast equation

ru(xt; ut)
0 = ��B0Êt��t+1 and Êt��t+1 = H (Axt +But)

for ut and Êt��t+1. These can then be used with the xt FOC for to obtain an
updated estimate of ��t

Êt�
�
t = rx(xt; ut)

0 + �A0Êt��t+1:

At t+ 1 RLS is used to update the estimates of A;B;H in

xt+1 = Axt +But + C"t+1;

Êt�
�
t = Hxt + �t,

This fully de�nes SP-learning as a recursive system.



Advantages of SP learning as a model of boundedly optimal decision-making:

� The pivotal role of shadow prices ��t , which are central to economic deci-
sions.

� Êt��t+1 and transition dynamics B = @xt+1=@u
0
t measures the intertem-

poral trade-o¤ which determines actions ut:

� Simplicity. Agents act as if they solve a two-period problem - an attractive
level of sophistication.

� As we will see, although our agents are boundedly optimal, in a linear-
quadratic setting they become fully optima asymptotically.



� Incorporates RLS updating of A;B;H, the hallmark of adaptive learning,
but extended to include forecasts of shadow prices.

� Can incorporate this model of bounded optimality into standard DSGE
models.

SP-learning is related to the alternative approaches:

� Euler equation learning can be viewed as a special case when dim(ut) =
dim(xt):

�Like Q-learning and classi�er systems, it builds o¤ of the intuition of Bellman�s
equation. But instead of trying to learn V (x) our agents try to learn �(x) =
V 0(x).



�Like in�nite-horizon learning we use the anticipated utility approach, not the
more sophisticated Bayesian approach

� Although the alternative approaches have some advantages, we �nd SP-
learning attractive due to its simplicity, generality and economic intuition, while
at the same time delivering asymptotic convergence to fully optimal decision-
making.



Learning to Optimize in an LQ set-up

� We now specialize the dynamic programming set-up to be the standard
linear-quadratic set-up, which has been extensively used studied and widely
applied. In this set-up we can obtain our asymptotic convergence result.

� Consider the single-agent problem: determine a sequence of controls ut
that solve, given the initial state x0,

max �E0
X
�t
�
x0tRxt + u

0
tQut + 2x

0
tWut

�
s.t. xt+1 = Axt +But + C"t+1;

A simple example is a linear-quadratic Robinson Crusoe economy.



� Under well-known conditions the sequence of controls are determined by

ut = Fxt where F = �
�
Q+ �B0PB

��1
(�B0PA+W 0)

where P is obtained by analyzing Bellman�s equation and satis�es

P = R+ �A0PA� (�A0PB +W )
�
Q+ �B0PB

��1
(�B0PA+W 0):

We state this well-known result as Theorem 1.

� Solving this �Riccati equation�is generally only possible numerically. This
requires a sophisticated agent with a lot of knowledge and computational
skills. Under our approach agents follow a simpler boundedly optimal
procedure.

� In our approach we replace RE and full optimality with (i) adaptive learning
and (ii) bounded optimality, based on (iii) the Lagrangian approach.



� The FOCs from the Lagrangian are

ut = �Q�1W 0xt + (�=2)Q�1B0Et�t+1
�t = �2Rxt � 2Wut + �A

0Et�t+1,

where �t is the vector of shadow-prices of the state variables. These, the
transition equation and the TVC identify optimal decision-making.

� Assuming adaptive learning we replace (A;B) with (At; Bt), estimated
and updated by RLS. Under bounded rationality we replace �t and Et�t+1
with Êt��t and Êt�

�
t+1.

ut = �Q�1W 0xt + (�=2)Q�1B0tÊt�
�
t+1

Êt�
�
t = �2Rxt � 2Wut + �A

0
tÊt�

�
t+1.

Thus: (1) given estimates xt; Bt and Êt��t+1, agents know how to choose
their control ut, (2) given xt; ut; At and Êt��t+1, agents know how to
revise their estimate Êt��t of the value of a unit of xt today.



� We must also specify how agents forecast ��t+1. We assume agents use
the PLM

��t = Hxt + �t:

Agents do not know H, and at t use RLS to update their estimate to Ht,
using a regression of Ês��s on xs with data s = 1; : : : ; t� 1. Then

Êt�
�
t+1 = Ht(Atxt +Btut):

� These equations + RLS de�nes SP-learning as a recursive system:

� Given estimates (At; Bt; Ht) and xt, the ut and Êt��t+1 equations
determine their values simultaneously.

�The transition equation xt+1 = Axt +But + C"t+1 gives xt+1:

� Using data for xt+1; xt; ut and Êt��t (from the Êt��t equation), esti-
mates are updated using RLS to (At+1; Bt+1; Ht+1)



The system can be written recursively as

Rt = Rt�1 + t
�1 �xt�1x0t�1 �Rt�1�

Ht = Ht�1 + t
�1R�1t xt�1

�
E�t�1�

�
t�1 �Ht�1xt�1

�0
R̂t = R̂t�1 +

1

t

  
xt�2
ut�2

!�
x0t�2; u

0
t�2

�
� R̂t�1

!
 
At
Bt

!
=

 
At�1
Bt�1

!

+
1

t
R̂�1t

 
xt�2
ut�2

! 
xt�1 �

�
A0t�1; B

0
t�1

� xt�2
ut�2

!!0
xt = Axt�1 +But�1 + C"t
ut = F (Ht; At; Bt)xt

E�t �
�
t = T̂ (Ht; At; Bt)xt

F (Ht; At; Bt) = (2Q� �B0tHtBt)�1(�B0tHtAt � 2W 0)
T̂ (Ht; At; Bt) = �2R� 2WF (Ht; At; Bt)

+�A0tHt (At +BtF (Ht; At; Bt))



Theorem 2 Under standard assumptions, and assuming a suitable projection
facility, under SP-learning (Ht; At; Bt) converges to ( �H;A;B) almost surely,
where �H = T̂ ( �H;A;B).

The heart of the argument focuses on T̂ (H;At; Bt); which for given At; Bt
maps the perceived shadow price parameters to the realized shadow-price pa-
rameters,

Êt�
�
t = T̂ (Ht; At; Bt)xt:

We show that (as with E-stability under LS learning) convergence is determined
by stability of

dH=d� = T̂ (H;A;B)�H;

and we then to show that this di¤erential equation is locally stable at the �xed
point �H.



Theorem 2 is a striking result:

� Decisions converge asymptotically to fully rational forecasts and fully op-
timal decisions.

� By estimating shadow prices, we have converted an in�nite-horizon problem
into a two-period optimization problem.

� The agent is learning over its lifetime based on a single �realization�of its
decisions and the resulting states.



Euler-equation learning

� The paper discusses the relationship between SP-learning and Euler-equation
learning.

� Euler equations are traditionally derived from variational arguments and
give FOCs that do not depend on Lagrange multipliers.

� First-order (one-step-ahead) Euler equations exist only in special cases: (1)
dim(u) � dim(x) and det gu 6= 0 or (2) gx = 0.

� Higher-order Euler equations exist more generally.



� Proposition 3 shows that for the LQ problem with dim(u) = dim(x) and
gx = 0 then suitably speci�ed EE-learning is equivalent to SP-learning
(in the sense that the largest eigenvalue of the T̂�map, which governs
asymptotic speed of convergence under learning, is the same).

� In general SP-learning and EE-learning are not equivalent. We give an
example below.



Example: SP Learning in a Crusoe economy

max�E
X
t�0

�t
�
(ct � b�)2 + �s2t�1

�
s.t. st = A1st�1 +A2st�2 � ct + �t+1

Output is fruit/sprouting trees. Under SP-learning Bob estimates the SPs of
new and old trees:

��it = ait + bitst�1 + ditst�2; for i = 1; 2; and thus

Êt�
�
it+1 = ait + bit(A1t�1st�1 +A2t�1st�2 � ct) + ditst�2; for i = 1; 2:

These plus the FOC for the control

ct = b̂� 0:5�Êt��1t+1:

determine ct; Et��1;t+1; Et�
�
2;t+1, given st�1; st�2.



The FOCs for the states give updated estimates of SPs

Êt�
�
1t = �2�st�1 + �A1tEt��1t+1 + �Et��2t+1

Êt�
�
2t = �A2tEt�

�
1t+1;

which allows us to use RLS update the SP equation coe¢ cients.

For this example EE-learning is also possible (by substituting out the SPs)

ct � ��st = 	t + �A1tÊtct+1 + �
2A2tÊtct+2;

where 	t = b̂(1� �A1t � �2A2t)

To implement EE-learning agents forecast using estimates of

ct = a3 + b3st�1 + d3st�2:

SP-learning and EE-learning are not identical, but both are asymptotically opti-
mal. This can be seen from a numerical calculation of their largest eigenvalue,
shown in Figure 1.



Euler  Equation Learning

Shadow  Price Learning
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Figure 1: Largent eigenvalue of DTH(H;A;B) under SP and EE learning.



Why are EE-learning and SP-learning di¤erent?

Here dim(u) = 1 and dim(x) = 2. The PLMs are

SP PLM: �t = Hxt vs EE PLM: ut = Fxt

so SP learning estimates 4 parameters whereas EE learning estimates 2 para-
meters.

The SP PLM requires less info than the EE PLM. For the SP PLM to be
equivalent to the EE PLM, agents would need to understand the structural
relation between �1 and �2 and to impose this restriction in estimation.



Example: SP Learning in a Ramsey Model

Our formal results for SP learning are for LQ models. Most DSGE models
use a more general setting. However we earlier described how SP learning
can be applied to a more general nonlinear setting, in which agents use linear
forecasting techniques.

We illustrate with the stochastic Ramsey model. Households have one unit of
labor and maximize

max E
X
�tu(ct)

st = (1 + rt)st�1 + wt � ct:

Competitive �rms use CRTS technology and y = zf(k) where y; k are output,
capital per unit of labor and log zt is AR(1) stationary with Ezt = 1.



Households will choose

u0(ct) = �Êt��t+1;

where ��t is the shadow value of an additional unit of st�1, which here is equal
to (1 + rt)u0(ct). We assume agents estimate

��t = a+ bkt + ezt
and use this and the linearized capital accumulation equation to forecast ��t+1:

Under SP-learning the recursive system is

zt = "tz
�
t�1

ct = c(kt; zt; �t�1), where �t = (at; bt; et)
0

��t = (1 + ztf
0(kt)� �)u0(ct)

Rt = Rt�1 + 
t(xtx
0
t �Rt�1)

�t = �t�1 + 
tR
�1
t xt(�

�
t � �0t�1xt)

kt+1 = ztf(kt) + (1� �)kt � ct:



Illustration

For log utility, Cobb-Douglas production, and � = 1, we can obtain the explicit
RE solution and analytical REE shadow price �t function.

The red line is initial beliefs. Under learning their is convergence to the black
line. The dashed blue line is the �(k) in the REE.

Long-run beliefs correspond to �rst order to the true dependence in the REE.
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Figure 2: Red: initial beliefs. Black: �nal beliefs. Blue: true �(k) in REE.



Conclusions

� SP learning can be applied to more general set-ups and in general equilib-
rium models.

� In special cases SP-learning reduces to Euler-equation learning, but SP-
learning is more general.

� Advantage of SP-learning: agents need only solve 2-period optimization
problems using one-step ahead forecasts of states and shadow prices.

� SP learning is boundedly optimal but is also asymptotically optimal.



� As a model of bounded rationality in a dynamic, stochastic setting, SP-
learning has the advantage of simplicity, generality and economic intuition.

� Future work includes:

�Application of SP learning in more sophisticated models.

�Careful analysis of the relationships between SP-learning and alternative
learning rules.

� As with expectations, persistent deviations from full optimization may
be natural to consider and of interest to explore.


