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Objectives
The objectives of this work were to develop analytical techniques for assessing the impact of
bycatch on populations of common dolphin (Delphinus delphis) and other small cetaceans and
to develop a robust management procedure that uses available information to generate safe
bycatch limits.

Background
The incidental catch, or bycatch, of small cetaceans in fisheries is a global conservation issue
(Read et al. 2006). Common dolphins are bycaught in a range of fisheries operating in the
Northeast Atlantic representing several countries (Tregenza et al. 1997, Tregenza and Collet
1998, Northridge 2006, Northridge et al. 2006, Northridge et al. 2007, Rogan and Mackey
2007). From a conservation standpoint, the major challenge is to ensure that this bycatch is
not impairing the ability of these populations to maintain themselves over time. To meet this
challenge requires an understanding of the impact of this bycatch on the size and dynamics of
these populations (Lewison et al. 2004). Furthermore, there is a need for a robust procedure
that can be used by managers to calculate limits to bycatch that will ensure that conservation
objectives are achieved in the future.

As part of the EU SCANS-II project, assessment methods and management procedures were
developed for harbour porpoise in the European Atlantic and North Sea (SCANS-II 2008,
Winship 2009). As part of the CODA project, we developed these methods and procedures
further and applied them to common dolphins in the Northeast Atlantic.

Assessing the impact of bycatch
An understanding of the state and dynamics of a population is a prerequisite for assessing the
impact of bycatch on its conservation status. Four quantities of particular interest are: 1) the
bycatch removed from the population, 2) the size of the population, 3) the rate at which the
population can grow in the absence of bycatch, and 4) the population size that could be
achieved in the absence of bycatch. While knowledge of these quantities is essential for
management and conservation, estimates of these quantities are often lacking or highly
uncertain, as is the case for common dolphins in the Northeast Atlantic.

An elegant approach to assessing the state and dynamics of a population is to fit a model of
that population to all relevant data simultaneously—an integrated population dynamics model
(e.g., Schaub et al. 2007). A population model ensures mathematical consistency among
inferences about different aspects of population dynamics, and a population model can be
fitted to a diverse range of data on population size, life history and bycatch. Embedding a
population model in statistical inference allows appropriate representation of uncertainty in
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estimates of population dynamics (Hilborn and Mangel 1997, Buckland et al. 2007). Bayesian
statistics are particularly useful for characterising uncertainty in population dynamics models
(Wade 2000, Harwood and Stokes 2003) and allow for seamless incorporation of estimation
uncertainty into prediction for risk assessment, population viability analysis and management
strategy evaluation (Harwood 2000, Maunder et al. 2000, Wade 2002).

We developed an integrated population dynamics model for assessing the state and dynamics
of a small cetacean population subject to bycatch. The full specifications of the model are
described below. In brief, the population model is an age-structured model of the female
component of a small cetacean population. The model can be fitted to a range of data on the
population (e.g., abundance), life history (e.g., pregnancy rate, sexual maturity at age, age
structure of natural mortality) and bycatch (e.g., age structure of bycatch mortality). The
numbers of animals bycaught can be treated as known input to the model or bycatch can be
estimated by fitting the model to data on bycatch rate per unit fishing effort with total fishing
effort as input. The model is flexible and allows for a range of scenarios with respect to
population dynamics (e.g., density-independent or density-dependent dynamics) and
population structure (e.g., multiple subpopulations with dispersal among them). The model is
fitted in a Bayesian statistical framework using a Markov chain Monte Carlo method.

Integrated population dynamics model
The population model was an age-structured simulation of the female component of one or
more subpopulations occupying non-overlapping geographic ranges with a time step of one
calendar year. All births were assumed to occur simultaneously at the middle of each year
(end of June).

First, natural mortality was applied prior to births:
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where Na,i,t is the number of animals of age a (years) in subpopulation i at the beginning of
year t and Ma is the instantaneous natural mortality rate from age a to a+1. Eq. 1 assumes
constant instantaneous natural mortality rates throughout the year.

Instantaneous natural mortality rates were calculated from estimated age-specific survival
rates (sa):
[2]  aa sM log

Age-specific survival rates were modelled in two ways. The first approach was to estimate
separate annual survival rates for five age groups: age 0; age 1; 2  age < am50; am50  age
<20; 20  age, where am50 is the age at which 50% of females are sexually mature
(estimated) and  is the maximum age. Observed maximum ages in samples of common
dolphins range from 25 to over 30 (Ferrero and Walker 1995, Westgate 2005, Danil and
Chivers 2007, Murphy et al. in revision). We fixed maximum age at 30. We assumed that all
animals that survived to age +1 died (naturally) at that age. The second approach to
modelling age-specific survival was to use Siler’s competing-risk model to describe
survivorship (Siler 1979):
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Births were assumed to occur at the middle of each year so that:
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where bi,t is birth rate in subpopulation i during year t (number of female calves born per
sexually mature female per year) and ma is the proportion of females that are sexually mature
at age a. The sexual maturity ogive was:
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where m is an estimated parameter specifying the width of the ogive. Eq. 4 assumes that birth
rate does not vary with age and that females must be sexually mature for at least one year
before giving birth. There is some evidence of reproductive senescence in common dolphins,
but old animals have been observed to be pregnant (Danil and Chivers 2007, Westgate and
Read 2007, Murphy et al. in revision). For simplicity we assumed no reproductive
senescence.

Birth rate was assumed to be either density-independent or density-dependent. When birth
rate was assumed to be density-independent, the birth rate did not vary over time. When birth
rate was assumed to be density-dependent, the birth rate was calculated as:
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where bK is birth rate at carrying capacity, bmax is maximum birth rate (estimated), K,1
iN is

the number of female non-calves at the beginning of the year at carrying capacity in
subpopulation i (estimated), and z is a density-dependence shape parameter. Eq. 6 assumes
that birth rate is a function of the number of non-calves alive at the beginning of the year.
Birth rate at carrying capacity was calculated as:
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We fixed z at 1 (i.e., a linear response in birth rate to population size).

After reproduction, natural mortality was applied for the remainder of the year followed by
bycatch:
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where Byc
,, tiaD is the number of females of age a in subpopulation i dying of bycatch mortality

in year t calculated as:
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where Bt is the bycatch estimate for year t (input) and Byc
,, tiad is the proportion of female

bycatch mortality composed of females of a given age from a given subpopulation in a given
year calculated as:
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Eq. 9 assumes that the sex ratio of bycatch is 1:1. There is evidence that male common
dolphins are bycaught more frequently than females in our study area, at least in some
fisheries (Silva and Sequeira 2003, Northridge et al. 2004). If this is generally the case then
Eq. 9 would overestimate the number of females bycaught. The time-series of bycatch (Bt)
that we used for common dolphins was incomplete and was very likely an underestimate and
this probably resulted in a much greater bias in estimates of female bycatch than the
assumption of a 1:1 sex ratio in bycatch. Eq. 10 assumes that all animals are equally
vulnerable to bycatch irrespective of age. Our integrated population dynamics model allows
for the estimation of age-specific vulnerability to bycatch, however, because there were few
age data for common dolphins that died naturally it was not possible to estimate age-specific
vulnerability to bycatch.

Dispersal among subpopulations was assumed to occur at the end/beginning of the year:
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where i is the rate of dispersal from subpopulation i (estimated or fixed) and I is the total
number of subpopulations. Eq. 11 assumes that animals of all ages disperse at the same rate
and that dispersing animals enter other subpopulations with equal probability.

The density-independent population model was initialised by estimating the total number of

females alive at the beginning of the first year, 
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distribution at the beginning of a year specified by Eqs. 1-5 and 8 with zero bycatch
(dominant eigenvector of the transition matrix adjusted for mortality in the latter half of a year
of life).

The density-dependent population model was initialised in one of two ways. The first
approach was to estimate the total number of female non-calves alive at the beginning of the

first year, 
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1
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iaN , and assume the stable age distribution at the beginning of a year under

density-independent growth with the initial birth rate. The second approach was to assume
that the population was at carrying capacity at the beginning of the study period.

Parameter estimation
Parameters of the population model were estimated using a Bayesian statistical framework
(Table 1 lists the estimated parameters). Six likelihood functions related the data to the model.
Errors in estimates of abundance were assumed to be log-normally distributed:

[12]

 



































I

i t

Nx

titi

ti

a
tiati

e
x

L
1

2

2loglog

,
N
,

N
2

,

2

0
5.0,,

N
,

2

1 





where LN is the likelihood of the abundance data, N
,tix is the mean abundance estimate for

subpopulation i in year t and i,t is the standard deviation of the errors on a log-scale which
was calculated from the coefficients of variation according to:
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Eq. 12 assumes a 1:1 sex ratio and that surveys were conducted at mid-year immediately after
births. It is possible that the population sex ratio is not 1:1 for common dolphins in our study
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area (Silva and Sequeira 2003). For example, Murphy (2004) found more immature males
than immature females in a sample of stranded common dolphins from Ireland, which could
indicate a male-biased sex ratio or higher mortality for immature males (and thus possibly a
female-biased sex ratio). Without specific data on population sex ratio we assumed a default
ratio of 1 male to 1 female.

The proportion of females that were sexually mature at a given age was assumed to be
binomially distributed:
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where LM is the likelihood of the sexual maturity data, M
an is the total number of females of

age a (all subpopulations) that were sampled and examined for sexual maturity and M
ax is the

number of those females that was sexually mature. Eq. 14 assumes that the overall proportion
of females of a given age that is mature is equal to the probability of being mature at the mid-
point of that year of life. The sexual maturity ogive was assumed to be identical among
subpopulations.

We assumed that the birth rate (bi,t) was equal to half the proportion of mature females that
was pregnant (1:1 sex ratio at birth) which was assumed to be binomially distributed:
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where LP is the likelihood of the pregnancy data, P
,tin is the total number of sexually mature

females in subpopulation i sampled in the last half of year t-1 and the first half of year t that

were examined for pregnancy and P
,tix is the number of those females that was pregnant. Eq.

15 assumes no prepartum mortality of foetuses; the occurrence of prepartum resorptions or
abortions of foetuses would cause birth rate to be positively biased. We did not consider data
on pregnancy from the months of June-August because of a potentially lower probability of
detection of early-term foetuses.

The proportions of total natural mortality composed of females of each age were assumed to
be multinomially distributed:
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where LDNat is the likelihood kernel for the natural mortality data (does not include the

likelihood coefficient, which is not affected by parameter values), Nat
,, tiad is the proportion of

total natural mortality in subpopulation i in year t composed of females of age a and DNat
,, tiax is

the number of females of age a in subpopulation i sampled in year t whose probable cause of
death was natural. The proportion of total natural mortality composed of females of a given
age in a given subpopulation in a given year was calculated according to the following two
equations:
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where Nat
,, tiaD is the number of females of age a in subpopulation i dying of natural mortality in

year t.

The likelihood of the bycatch mortality age-structure data was calculated in the same way as
for natural mortality:
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Eqs 16 and 19 assumed that sampling errors in mortality age structure were independent
among subpopulations and years. Unmodelled heterogeneity in age structure of mortality
among subpopulations or years or non-random sampling of animals (e.g., bycatch of groups
of females with different age structures) could have resulted in non-independence and
overdispersion of the data relative to a multinomial likelihood function (and underestimation
of credible intervals). For example, the age and sex composition of previous mass strandings
and bycaught groups of common dolphins in our study area suggest segregation of animals by
sex and age (Silva and Sequeira 2003, Murphy 2004). The integrated population dynamics
model that we developed allows for modelling such overdispersion through the use of a
Dirichlet-multinomial likelihood, however, for this analysis we used the multinomial
likelihood.

The five likelihoods/likelihood kernels (Eqs 12, 14, 15, 16 and 19) were assumed to be
independent (i.e., independent random sampling errors) so that the total likelihood kernel was
the product of the individual likelihoods/likelihood kernels.

Posterior probability distributions for the parameters of the population model were estimated
using a Markov chain Monte Carlo (McMC) algorithm with a Metropolis acceptance/rejection
rule (Gelman et al. 2004). Prior probability distributions were assumed to be uniform (Table
1) so that the acceptance rule operated only on the joint likelihood kernel. In practice, we used
log-likelihoods instead of likelihoods for computational ease. Proposal values were drawn
from the proposal distributions for each parameter individually followed by
acceptance/rejection after each individual parameter draw. A proposed parameter value was
accepted if the difference between the new total log-likelihood kernel and the previous kernel
was greater than the log of a random uniform number between 0 and 1. Uniform proposal
distributions were used with initial widths of 20% of the starting parameter values. These
widths were adjusted during the burn-in period with a target acceptance rate of 40% (Gelman
et al. 2004). Widths were increased when the acceptance rate was higher and decreased when
the acceptance rate was lower. Draws outside the ranges of the prior probability distributions
were assigned zero likelihood. With the density-dependent model further constraints were

placed on parameter draws so that bK < bmax and 
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

1
0,,

a
iaN  K,1

iN ; parameter draws that did

not satisfy these constraints were assigned zero likelihood. These constraints on parameter
space altered the uniform priors for some parameters so we present realized priors in our
results, which we obtained by running the McMC algorithm without consideration of the data.
We assessed the convergence of the sample of the joint posterior using the Bayesian Output
Analysis package for R for Windows (Smith 2001) including Raftery and Lewis, Geweke and
Heidelberger and Welch diagnostics. The McMC chain was run for 1,500,000 iterations
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keeping every 100th iteration not including a burn-in of 500,000 iterations (posterior sample
size = 10,000). When full posterior probability distributions are not presented, medians and
95% intervals of posterior probability are presented as summary statistics.

The population model and McMC algorithm were coded using the C computer language
compiled with the free MinGW port (http://www.mingw.org) of the GNU GCC compiler
(http://www.gnu.org) and the free software package R (R Development Core Team 2007).

We applied our integrated population dynamics model to data on common dolphins in the
Northeast Atlantic to try to assess the historical and current conservation status and dynamics
of the population and the impact of previous bycatch (see ‘Application to common dolphins’
section below).

It is important to understand the maximum level of bycatch that small cetacean populations
can sustain while still maintaining desirable conservation status. Management actions can
then focus on ensuring that bycatch is kept below this level. The results of an assessment can
be used to calculate appropriate bycatch limits, but this approach is subject to failures arising
from incorrect assessments (e.g., incorrect model specification and biased or misleading data).
Furthermore, there is no guarantee that using a current assessment to calculate bycatch limits
will achieve conservation objectives in the long-term. A preferable approach to managing
bycatch from a population is to develop a robust, fully-tested management procedure that can
be used to calculate bycatch limits. A management procedure takes information about a
population as input and calculates a bycatch limit that will achieve the desired conservation
objectives. Computer simulation can be used to explicitly evaluate the long-term performance
of the management procedure, a technique known as management strategy evaluation.

Table 1. Estimated parameters of the population model. Prior probability distributions were
uniform (described by a lower limit and an upper limit).
Symbol Description # of

parameters
Prior probability
distribution






0
0,,

a
iaN

initial number of females
(density-independent)

1  I 0, 500000






1
0,,

a
iaN

initial number of female non-calves
(density-dependent)

1  I 0, 500000

K,1
iN number of female non-calves at

carrying capacity (density-dependent)
1  I 0, 500000

am50 age when 50% of females are mature 1 3, 13
m width of maturity ogive 1 0, 2
bi birth rate (density-independent) 1 ( I) 0, 0.5
bmax maximum birth rate

(density-dependent)
1 0, 0.5

sa natural age-specific survival 5 0, 1
,  survivorship function parameters 5 0, 10
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Calculating bycatch limits
We developed management procedures for calculating bycatch limits for small cetacean
populations. We considered two existing management procedures, the Potential Biological
Removal procedure of the US Government (PBR; Wade 1998) and the Catch Limit Algorithm
procedure of the International Whaling Commission (CLA; Cooke 1999), as candidates for
our purpose. Full specifications of the procedures are described below. In brief, both
procedures take information about a small cetacean population as input and then they output a
bycatch limit. The PBR procedure takes a single, current estimate of population size as input.
The CLA procedure takes time-series of estimates of population size and estimates of
previous bycatch as input. Both procedures explicitly incorporate uncertainty in the estimates
of population size. Thus, the procedures also require estimates of the precision of the
estimates of population size as input. Under the PBR procedure, the calculation of the bycatch
limit proceeds using a single, relatively simple equation. Under the CLA procedure, the
calculation of the bycatch limit is slightly more demanding computationally. The CLA
procedure involves statistically fitting a simple population model to the input data series and
then calculating the bycatch limit as a function of several quantities estimated through the
model fitting.

A key element of both management procedures is the ability to ‘tune’ the procedure, or adjust
the bycatch limits, so that specific conservation objectives are achieved. Another important
element of both procedures is the ability to update the bycatch limit as new data on the
population become available. However, only the CLA procedure makes use of historical data
on the population. This feature of the CLA procedure allows it to learn about the population
over time and allows for a more sophisticated rule for setting the bycatch limit whereby a
threshold population size (relative to carrying capacity) can be specified below which the
bycatch limit is set to zero. Under the PBR procedure, the bycatch limit is approximately a
constant proportion of the estimated population size.

The management procedures are applied at the spatial resolution of defined management
areas. A given procedure is applied separately to each management area resulting in a separate
bycatch limit for each area.

We developed a computer-based simulation model, or operating model, for testing and
comparing the performance of the two management procedures and for tuning the procedures
so that one would expect to meet specific conservation objectives in practice. Full
specifications of the operating model are described below. In brief, the operating model
simulates a small cetacean population over time while periodically simulating surveys of the
size of this population. Bycatch is removed from this population annually according to
bycatch limits set by the management procedures. Importantly, the management procedures
do not have knowledge of the true size of the population; they only have the simulated survey
data and bycatch limits as input. This is the key aspect of the simulation model that mimics
how the management procedures would operate in reality and thus how one would expect
populations to fare under the management procedures in practice. The model of the cetacean
population incorporates age structure, density dependence (in birth rate), multiple
subpopulations (with dispersal among them), and environmental variation (represented by
systematic changes in carrying capacity, periodic catastrophic mortality events, and random
fluctuations in birth rate). Survey estimates are generated with random error and potentially
directional bias. Similarly, bycatch is modelled as a random (and potentially biased)
realization of the set bycatch limit. The operating model allows for multiple management
areas that do not necessarily correspond to the spatial ranges of subpopulations. Thus, the
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model allows for flexible spatial scenarios regarding management and subpopulation structure
(e.g., seasonal mixing).

The operating model can be conditioned on the results of an assessment to examine the
performance of the management procedures conditional on the estimated state and dynamics
of the population. The density-dependent version of the integrated population dynamics
model that we developed for assessment is very similar to the operating model used to test the
management procedures. The output from the integrated model includes distributions of
parameter estimates and distributions of previous bycatch that can be used as input to the
operating model to condition performance-testing simulations of the management procedures
on the results of the assessment. Winship (2009) describes the results of conditioned
performance-testing simulations of the management procedures for harbour porpoise in the
North Sea.

We used our operating model to tune the management procedures and calculate bycatch limits
for common dolphins in the Northeast Atlantic (see ‘Application to common dolphins’ section
below).

Management procedures

PBR
Under the PBR management procedure the bycatch limit for a management area is calculated
using a relatively simple equation and a current estimate of absolute abundance (Wade 1998):

[20] FRNCL tjtj
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where CLj,t is the bycatch limit for area j in the year following time t, min
,tjN is the ‘minimum’

estimated number of animals in area j at time t, Rmax is maximum population growth rate (i.e.,
population growth rate at low density), and F is a recovery factor—a parameter that can be
tuned so that the PBR procedure achieves specific management objectives. Errors in estimates

of abundance from surveys are assumed to be log-normally distributed so that min
,tjN is

calculated as:
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where tjO , is a survey estimate of absolute abundance in area j at time t, O
,tjCV is the

coefficient of variation of this estimate, and Z is a standard normal deviate corresponding to a
specified percentile (fixed at -0.842 for the 20th percentile following Wade 1998). Eq. 21

assumes that tjO , is the median of the log-normal error distribution.

The PBR management procedure was implemented in the operating model by calculating CLj,t

immediately after a survey for absolute abundance and using this annual bycatch limit until
the next survey.

CLA
Under the CLA procedure the bycatch limit is calculated as a function of population
parameter estimates that are derived by fitting a relatively simple, deterministic population
model to time-series of estimates of absolute abundance (Cooke 1999). A time-series of
bycatch estimates is input to the population model.
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The population model of the CLA is:
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where Nj,t is total population size in area j at time t (years), max
jR is maximum population

growth rate, K
jN is population size at carrying capacity, and z determines the shape of the

density-dependence relationship (fixed at 2). The population model is initialised by assuming
that the population is at carrying capacity at t=0, the beginning of the bycatch time-series. It is
important to note that the population might not have been at carrying capacity at the
beginning of the bycatch time-series, for example if the time-series is incomplete.
Nevertheless, the CLA assumes that the population starts at carrying capacity.
The population model is fitted to estimates of absolute abundance using a quasi-Bayesian
statistical framework (Cooke 1999, International Whaling Commission 1999).

If errors in estimates of absolute abundance are assumed to be independent over time and log-

normally distributed with known CV(s) then a likelihood kernel for non-zero estimates ( 0O
jL )

is:

[23] 

































 
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,

2

,
O

,

)1log(2

log

0O
jtt

t

CV
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O

j
tj

tjj

tj

eL

where 0O
jt is the set of years in which surveys for absolute abundance were conducted in area

j resulting in non-zero estimates of abundance and O
jB is a bias parameter specifying the

expected absolute abundance estimated by a survey as a proportion of true abundance. The
CLA procedure also allows for zero estimates of abundance. The likelihood of these estimates
is based on the Poisson distribution:

[24] 






 

0O
,

0O
jtt

t

N

j

tj

eL

where 0O
jt is the set of years in which surveys for absolute abundance in area j resulted in

zero estimates and  is the reciprocal of the expected number of animals counted on a survey
as a proportion of the number of animals in the population. The value of  depends on
various aspects of the surveys (e.g., effort, area covered), but we assumed a theoretical value
of 1000. Zero estimates of abundance would have occurred extremely infrequently, if at all, in
the simulations. Assuming independence between the zero and non-zero abundance estimates
the joint likelihood is the product of Eqs 23 and 24.

The estimated parameters of the CLA procedure’s population model are max
jR , O

jB and Dj,T

(the current number of animals as a proportion of the number of animals at carrying capacity).
Uniform prior probability distributions are assumed for all three parameters:

 07092.0,0U~max
jR , 









3

5
,0U~O

jB , and  1,0U~,TjD . These prior probability distributions

are assumed to be independent.

After each survey for absolute abundance, a posterior distribution of nominal bycatch limits is
calculated from the posterior distribution of population model parameters and the
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corresponding posterior distribution of predicted current population size using a numerical
integration algorithm summarized by the following pseudocode:

I. Start with the minimum max
jR , maximum K

jN , and maximum Dj,T.

II. If max
jR is less than the maximum max

jR then continue to step III, otherwise stop.

III. Simulate the population from t=0 to T using Eq. 22 where T is the current year.
IV. Calculate the new Dj,T and the difference between the new Dj,T and the previous Dj,T.

V. If the new Dj,T is 0 then increment max
jR and return to step II, otherwise calculate a

nominal bycatch limit according to the catch control rule:

[25]


























 0,1,minmax

K

,

,
max

, 
j

Tj

TjjTj
N

N
NRCL

where  is a tuning parameter that can be used to adjust the CLA procedure to achieve
specific conservation objectives, and  is a threshold population size relative to
carrying capacity at which bycatch is set to zero (the internal protection level).

VI. Integrate ( 0O
jL  0O

jL )w over the prior for O
jB and multiply by the difference between

the new Dj,T and the previous Dj,T to get a weighted likelihood kernel corresponding to
the nominal bycatch limit from step V. The parameter w weights the contribution of
the likelihood to the posterior (fixed at 1/16). This weighting means that this is not a
strict Bayesian analysis. The down-weighting is implemented to reduce variability in
bycatch limits (Cooke 1999).

VII. Decrement K
jN and return to step III.

Finally, the set of nominal bycatch limits is sorted and the implemented bycatch limit is
chosen to correspond to a specific quantile, Q, of the corresponding cumulative (normalized)
weighted likelihoods. The CLA procedure was implemented in the operating model by
calculating CLj,t immediately after a survey for absolute abundance and using this annual
bycatch limit until the next survey. Time-series of previous bycatch limits were input to the
CLA procedure.

There were several key differences between our version of the CLA procedure and the version

used by the IWC. First, in the IWC version of the catch control rule (Eq. 25) max
jR is replaced

by a productivity parameter that is equal to max
jR /1.4184. Thus,  in our version of the catch

control rule is not equivalent to the corresponding tuning parameter in the IWC version.
Second, in the IWC version of the CLA procedure surveys are assumed to have occurred at
the start of the last year of catch (or at the start of the last year within an inter-limit period). In
our version surveys are assumed to have occurred at the end of the last year of catch (i.e., after
the last catch not before). Third, covariance among estimates of abundance was not
considered although covariance is straightforward to incorporate (Cooke 1999).

Operating model
The model of the known population was an age-structured, birth-pulse simulation of one or
more subpopulations with a time-step of one year of life. Each subpopulation was modelled
individually and during each time-step was subject to four processes in the following order:
natural mortality, dispersal, bycatch and reproduction.

First, natural mortality was applied to each subpopulation according to:
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[26]  atiatia sNN ;Binom ,,,, 

where Na,i,t is the number of animals of age a in subpopulation i at time t, sa is the natural
annual survival rate from age a to a+1, and Binom(n, p) is a random binomial variable with
sample size n and probability p (see Table 2 for a complete list of the parameters of the
operating model). For common dolphins, natural survival rates were fixed at 0.8, 0.86, 0.92,
0.97, 0.92, 0.87, 0.82, 0.77 and 0.72 for ages a=0, 1, 2, 2<a<26, 26, 27, 28, 29 and 30,
respectively. Survival rates for common dolphins are not well understood. We developed this
survival schedule so that the chosen baseline maximum birth rate would result in the chosen
baseline maximum population growth rate. Further constraints that we applied in developing
the survival schedule were a calf survival of 0.8 (Taylor et al. 2007), high adult survival
(Reilly and Barlow 1986), linearly increasing survival over the first few years, linearly
decreasing survival in the last few years, and a survivorship of the oldest age class <0.2. After
natural mortality, the model allowed for a catastrophic natural mortality event. These events
were implemented as 50% mortality across all ages (subject to demographic stochasticity)
after the usual natural mortality. These events occurred with a specified probability each year
(Pcatastrophe).

Second, the survivors of natural mortality dispersed amongst the subpopulations according to:

[27]   














ik

k

k
tkaitiatiatia

I
NNNN

1
;Binom;Binom ,,,,,,,,




where i is the rate of dispersal from subpopulation i. Eq. 27 implies that dispersing animals
entered other subpopulations with equal probability. i was assumed to be the same for all
ages. Note that because natural mortality rates did not vary by density or subpopulation, the
order of natural mortality and dispersal did not affect dynamics.

Third, bycatch was removed from the population. Total bycatch from the population in
management area j during the year following time t (TCj,t) was modelled as a potentially
biased, random deviation from the set bycatch limit for year t (CLj,t):

[28]   2byc
,,

byc
, ,N CVCLCLBTC tjtjtj 

where Bbyc is the directional bias in actual bycatch relative to the bycatch limit (expected TCj,t

as a proportion of CLj,t), CVbyc is the coefficient of random variation in bycatch and N(,2) is
a random normal variable with expectation  and variance 2. Random deviations from the
bycatch limit were assumed to be independent between years. The expected proportion of the
bycatch composed of animals of age a from subpopulation i in management area j during the
year following time t (va,i,j,t) was calculated according to:

[29]


 





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0 1
,,

byc
,

,,
byc
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,,,
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I

i
tiaija

tiaija

tjia
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N
v

where a is the vulnerability of an animal of age a to bycatch relative to other ages, byc
,ij is

the proportion of subpopulation i residing in management area j during bycatch,  is
maximum age, and I is the total number of subpopulations. The calculation of vulnerabilities
(Eq. 29) assumed that all animals within a management area mixed freely irrespective of age
and subpopulation. The total bycatch in area j was then distributed stochastically among the
subpopulations and ages within subpopulations according to:
[30]  tj,tjtj TC VC ;Multin ,, 

where Cj,t=[ca,i]j,t is the matrix of bycatch c of age a from subpopulation i in management area
j during the year following time t, Vj,t=[va,i]j,t is the matrix of proportions of bycatch, and
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Multin(n; p) represents a random multinomial distribution with sample size n and

probabilities p. Note that 1
0 1

,,, 
 



a

I

i
tjiav . The age- and subpopulation-specific bycatch was

then removed while incrementing ages by one year according to:

[31] 









 


 0,max

1
,,,,,1,,1

J

j
tjiatiatia cNN for a < 

where J is the total number of management areas. Note that removing bycatch after natural
mortality maximized the overall mortality rate for a given absolute bycatch because all
bycaught animals were survivors of natural mortality.

The only calf mortality resulting from bycatch (Eqs 28-31) was calves bycaught according to
their age-specific vulnerability. However, if lactating females with dependent calves are
bycaught then their abandoned calves will die, but potentially not be a part of the bycatch.
The maximum additional calf mortality from subpopulation i in year t that could result from
abandonment might be:

[32] 
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which assumes that calves are entirely dependent on their mothers for their first year of life
(i.e., the calf of a bycaught mother will die) and that the probability of a calf being bycaught
is independent of the probability of the mother being bycaught. Similar assumptions were
made by Woodley (1993) in a modelling study of dolphin bycatch. The latter assumption
seems unlikely because mothers and calves would be together and thus experience similar
risks of bycatch. Nevertheless, the effect of calf abandonment can be incorporated in the
operating model according to Eq. 32.

Fourth, reproduction was applied:

[33]   







 


 ti

a
atiati bmNN ,

1
1,,,,0 ;Binom



where ma is the proportion of animals that are sexually mature at age a and b is annual birth
rate (number of calves per mature animal). The sexual maturity ogive was:

[34]
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where am50 is the age at which 50% of animals are sexually mature and m is a parameter
determining the width of the maturity ogive. For common dolphins, we fixed the sexual
maturity parameters, am50 and m, at 8.23 and 1.02, respectively, based on an analysis of this
species’ life history in the Northeast Atlantic by Murphy et al. (in revision). This age at sexual
maturity is similar to that described for other common dolphin populations (Ferrero and
Walker 1995, Westgate 2005, Danil and Chivers 2007). Note that maturity was not treated
stochastically in order to simplify computation; in Eq. 33 the term 1,, atia mN was rounded to

the nearest integer. The main assumptions regarding natural mortality and reproduction were:
1) females could potentially give birth for the first time one year after they matured; 2) b did
not vary with age; and 3) all animals died before t=+1 (knife-edge survival senescence).
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Birth rate was assumed to be density-dependent and a function of the number of non-calves

(




1
,,

a
tiaN ):

[35]  





























































































 5.0,0,1maxmin

1

K
,,

1
,,

KmaxK
,

te

N

N

bbbb

z

a
tia

a
tia

ti






where bmax is maximum birth rate, bK is birth rate at carrying capacity, 




1

K
,,

a
tiaN is the number

of non-calves in subpopulation i at carrying capacity at the beginning of year t, z is a density-
dependence shape parameter, and t is a random deviation in birth rate in year t as a result of
environmental variability. It was ensured that the expected birth rate was greater than zero and
that realized birth rate was less than 0.5. Birth rate at carrying capacity was calculated as:
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where la is survivorship to age a. Survivorship was calculated as:
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For common dolphins, we chose maximum birth rates (bmax) of 0.179 and 0.250 to represent
maximum population growth rates of 2% and 4% per year, respectively. These maximum
birth rates correspond to inter-birth intervals of 2.0 and 2.8 years, respectively, assuming a 1:1
sex ratio. Two years is near the lowest estimated inter-birth interval for common dolphins
(Danil and Chivers 2007). Lower annual pregnancy rates have been observed for several
populations of common dolphins (e.g., 0.25-0.3; b=0.125-0.15; Westgate 2005, Westgate and
Read 2007, Murphy et al. in revision), but these pregnancy rates might not correspond to
populations growing at their maximum rate.

The number of non-calves at carrying capacity was not treated as a parameter, it was
calculated from a parameter specifying the total number of animals at carrying capacity

(




0

K
,,

a
tiaN ) using the following relationship:
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The model also allowed for linear changes in the number of animals at carrying capacity over
time.

In addition to density dependence in birth rate, the operating model allowed for stochastic
annual variation in birth rate over time representing environmental variability. Annual
multipliers of birth rate were assumed to be log-normally distributed and potentially
correlated over time (first-order autoregressive model) with mean 1 and coefficient of
variation CVenv so that:

[39]       22env
1

2env 11log0;N11log5.0    CVCV tt
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where || < 1 is a parameter controlling the strength of the correlation in deviations over time
( = 0 specifies no correlation). The first deviation was initialised to the mean value:

[40]  2env
0 1log5.0 CV

Immediately after births, survey estimates of absolute abundance ( tjO , ) were simulated for

each management area every f years for input to the management procedure. First, animals
were distributed stochastically among management areas according to:
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where Xi,t=[xj]i,t is the vector of numbers of animals in management areas j belonging to

subpopulation i at time t, and  
iji

srvysrvy  is the vector of expected proportions of animals

belonging to subpopulation i in management areas j at the time of surveys. Survey estimates
were then simulated for each management area assuming that the errors in the estimates were
independent between years and surveys and log-normally distributed so that:
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where BO is a directional bias parameter specifying the expected absolute abundance

estimated by a survey as a proportion of true abundance, and
OCVB is a directional bias

parameter specifying the true coefficient of variation in survey estimates of absolute
abundance as a proportion of the estimated coefficients of variation of the estimates of
absolute abundance. Eq. 42 assumes that the true population size is the median of the log-
normal error distribution which is identical to the assumed error distribution for abundance
estimates in the PBR and CLA procedures (Eqs 21 and 23, respectively).

Simulations were initialized by first setting the number of non-calves in subpopulation i to a
proportion of the number of non-calves in that subpopulation at carrying capacity (Di,0):
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Then bi,0 was calculated according to Eq. 35. Next, the age distribution at t=0 for each
subpopulation was set to the stable age distribution (dominant eigenvector of the transition
matrix) specified by deterministic versions of Eqs 26 and 33 with bi,0. Finally, the number of

animals of each age at t=0 were calculated from this age distribution and 




1
0,,

a
iaN . Such a

stable age distribution would of course not be realized in a population governed by density-
dependent dynamics. Nevertheless, this age distribution was used to represent more realistic
age distributions for subpopulations that were initially at fractions of their carrying capacity.
Note that while the population model of the CLA procedure assumes that the population is at
carrying capacity at the beginning of the bycatch time-series, this does not have to be the case
in the operating model.

The management procedures and operating model were coded using the free software package
R (R Development Core Team 2007) and the C computer language compiled with the free
MinGW port (http://www.mingw.org) of the GNU GCC compiler (http://www.gnu.org). The
CLA routine was coded in C based on a FORTRAN CLA routine developed and provided by
the IWC (International Whaling Commission 1994). Many random checks were performed to
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confirm that the CLA routine gave the same limits as the IWC CLA routine after accounting
for the differences described above.

Table 2. Parameters of the operating model and values used in generic performance-testing
simulation trials. Baseline values are indicated by ‘*’ and ‘worst-case’ values used for the
third tuning are indicated by ‘†’. Fixed parameters were held constant in all trials. In each trial
the value of one bottom-level parameter was altered while keeping all others at their baseline
values, and then simulations were run over all combinations of values of the top-level
parameters.

Parameter(s) Symbol Values
Fixed
Age at which 50% of animals are
sexually mature

am50 8.23*

Width of maturity ogive m 1.02*
Maximum age  30*
Age-specific vulnerability to
bycatch

a 1* (for all a)

Age-specific natural annual survival
rate

sa * 0.8 for a=0, 0.86 for a=1, 0.92 for a=2, 0.97 for
2<a<26, 0.92 for a=26, 0.87 for a=27, 0.82 for a=28,
0.77 for a=29, 0.72 for a=30

Total number of animals at carrying
capacity in each subpopulation 





0

K
,,

a
tiaN

100000*

Top-level
Initial population status (number of
non-calves in each subpopulation as
proportion of the number at carrying
capacity)

Di,0 Two sets of trials (only the first set was done with the
PBR procedure):
1)* 15 years of constant bycatch (CLj,t) prior to

the simulation period resulting in


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= 0.05,

0.1, 0.3, 0.6, 0.8 and 0.99

2)














0
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,,

0
0,,

a
tia

a
tia

N

N

=0.05, 0.1, 0.3, 0.6, 0.8, and 1 and

a historical bycatch of 1 animal for one year
Maximum birth rate bmax 0.1788998, 0.2497297* (result in maximum annual

population growth rates of 2% and 4%, respectively)
Bottom-level
Shape of density dependence z 0.1, 1*, 13.5 (result in maximum net productivity

levels of about 40%, 50% and 85% of carrying
capacity, respectively)

Survey bias (expected estimated
absolute abundance as proportion of
true absolute abundance)

BO 0.5, 1*, 1.5†

Survey precision (CV of estimates
of absolute abundance)

CVO

0.1, 0.2*, 0.6 (for
OCVB =1 and 2)

Survey CV bias (true CV of
estimates of absolute abundance as
proportion of estimated CV of these
estimates)

OCVB 0.5, 1, 2*



17

Bycatch bias (realized bycatch as
proportion of bycatch limit)

Bbyc 0.5, 1*, 2†

Bycatch precision (CV of realized
bycatch)

CVbyc 0.1, 0.3*, 1.0

Survey frequency f 5, 10*, 15
Change in carrying capacity






0

K

a
aN

no change*, 50% linear increase or decrease over
simulation period

Catastrophes (annual probability of
catastrophic natural mortality)

Pcatastrophe 0*, 0.02

Environmental stochasticity (CV of
birth rate deviations)

CVenv 0*, 0.2

Environmental stochasticity
(autocorrelation in birth rate
deviations)

 0*, 0.5 (when CVenv=0.2)

Population structure

Number of subpopulations I 1*
Number of management areas J 1*
Proportion of subpopulation in
management area (surveys)

srvy
,ij 1*

Proportion of subpopulation in
management area (bycatch)

byc
,ij 1*

Dispersal rate i NA
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Application to common dolphins
Assessment
Data
We fitted our integrated population dynamics model to several datasets on common dolphins
in the Northeast Atlantic. The SCANS-II and CODA surveys provided absolute abundance
estimates for common dolphins in Northeast Atlantic shelf waters in July 2005 and offshore
waters in July 2007, respectively. The SCANS-II design-based abundance estimate was
63,366 (CV=0.46). Density surface modelling improved the precision of the CODA design-
based estimate and the model-based abundance estimate was 116,709 (CV=0.337). Life
history data were available for stranded and bycaught females from the UK and Ireland
including sexual maturity status of known-aged animals, pregnancy status of mature animals,
and age-at-death of animals dying as a result of natural causes and bycatch (Tables 3 and 4).
The life history data were provided by Rob Deaville and Paul Jepson (Institute of Zoology,
London, UK), Sinéad Murphy (University of St Andrews, St Andrews, UK), and Emer Rogan
(University College Cork, Cork, Ireland). Finally, estimates of previous bycatch of common
dolphins in several fisheries in the Northeast Atlantic were available from the literature (Table
5). These bycatch estimates were treated as known input to the model. It is important to
recognise that the bycatch estimates are extrapolations that are subject to substantial
uncertainty. Furthermore, the bycatch estimates do not compose complete time-series for any
of the fisheries, and bycatch occurs in other fisheries for which estimates were not available.
Thus, these bycatch estimates are probably best considered as minimum estimates of previous
bycatch, although bycatch estimates for individual fisheries in individual years could be
overestimates.
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Table 3. Data on sexual maturity and age structure of natural and bycatch mortality. Data are
summarized for all years, but the model was fitted to mortality data from each year.

Sexual maturity
Age

No Yes
Natural

mortality
Bycatch
mortality

0 18 0 1 11
1 6 0 1 6
2 8 0 0 4
3 5 0 0 2
4 6 0 1 4
5 3 0 0 3
6 8 0 0 5
7 2 1 0 2
8 2 2 0 3
9 0 4 0 0
10 2 2 0 3
11 1 3 0 4
12 0 3 0 2
13 0 5 2 3
14 0 4 0 4
15 0 5 0 2
16 0 8 0 5
17 0 4 0 1
18 0 7 0 6
19 0 5 0 2
20 0 2 0 1
21 0 2 0 0
22 0 1 0 0
23 0 0 0 0
24 0 0 0 0
25 0 7 1 1
26 0 3 1 1
27 0 0 0 0
28 0 0 0 0
29 0 0 0 0
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Table 4. Data on pregnancy for sexually mature females. Years represent 1 September-31
May.

Year No Yes
1989/1990 0 0
1990/1991 2 1
1991/1992 8 3
1992/1993 6 1
1993/1994 10 4
1994/1995 4 2
1995/1996 5 2
1996/1997 8 1
1997/1998 0 0
1998/1999 4 3
1999/2000 4 2
2000/2001 7 5
2001/2002 10 3
2002/2003 3 3
2003/2004 10 0
2004/2005 10 0
2005/2006 5 2
2006/2007 1 0
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Table 5. Estimates of common dolphin bycatch. Estimates are for years of life (1 July – 30 June) beginning in the year indicated.

Fishery
Driftnet Gillnet Tanglenet Pelagic trawl

Year
Tuna

(France,
Ireland,
UK)1

UK Ireland UK
Bass
pair

(UK)

Bass Area
VII

(European
not

including
UK bass

pair)

Bass Area
VIII

(European
not

including
UK bass

pair)

Hake
(France)

Horse
mackerel

(Netherlands)

Tuna
(European)

Total

1990 243 243
1991 390 390
1992 608 608
1993 1347 552 1792 1581
1994 1580 253 2033 1013 953 2004
1995 666 666
1996 546 546
1997 947 947
1998 1706 1706
1999 2101 2101
2000 1589 1904 1779
2001 384 38
2002 1154 115
2003 5034 605 4105 1285 1101
2004 416 866 1394 605 4105 1285 864
2005 986 3066 844 488
2006 576 2216 206 298
1 Rogan and Mackey (2007)
2 Tregenza et al. (1997); not clear whether these are annual values; bass and tuna estimates are for French fleet only; bass estimate is for all areas
3 Tregenza and Collet (1998); not clear whether these are annual values
4 Northridge (2006)
5 Northridge et al. (2006)
6 Northridge et al. (2007); estimates for calendar years were divided in half and allocated to the corresponding years of life
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Design
The assessment was conducted for the time period 1990-2007. The population was treated as
a single, panmictic population inhabiting the Northeast Atlantic. Murphy et al. (2008)
reviewed information on common dolphins in the Northeast Atlantic and concluded that these
animals can be considered a single population ranging from waters off Scotland to Portugal.
We combined the SCANS-II and CODA abundance estimates into a single abundance
estimate for this population, 180,075 (CV=0.272). The CV for the combined estimate was
derived by assuming that the errors were independent between the two surveys and summing
the variances of the estimates from the two surveys. We assigned the combined abundance
estimate to the year between the two surveys, July 2006. If common dolphins were distributed
differently between the SCANS-II and CODA survey areas in 2005 and 2007, then the
combined estimate would be inaccurate. Ideally, the error arising from annual variability in
spatial distribution should be incorporated in the CV of the combined abundance estimate
(Skaug et al. 2004), but this was not possible as we only had two estimates from mutually
exclusive areas and years. Common dolphins are also found outside of the combined SCANS-
II/CODA area and if these animals are part of the same population then the combined
abundance estimate that we used would be a minimum estimate.

Four model scenarios were considered with respect to model parameterisation and population
dynamics. The first three scenarios modelled density-dependent population dynamics. In
Scenarios 1 and 2 the population was assumed to be at carrying capacity at the beginning of
the study period (i.e., 1990). Scenarios 1 and 2 differed in the parameterisation of age-specific
natural survival rates: Scenario 1 modelled age-specific survival with the Siler competing-risk
model while Scenario 2 modelled survival with five discrete age-class-specific survival rates.
In Scenario 3 the population was allowed to be below carrying capacity in 1990 (e.g., due to
bycatch prior to 1990) so that initial population size was an extra estimated parameter.
Scenario 4 modelled density-independent population dynamics. Scenarios 3 and 4 both
modelled survival using discrete age-class-specific rates.

Results
The main result of the assessment was that the combination of data and model used were not
informative about the main population parameters of interest: population growth rate,
maximum population growth rate and carrying capacity. Figures 1-4 show the posterior
probability distributions for the model parameters. In the density-dependent Scenarios 1-3 the
posterior probability distributions for maximum birth rate were wide and uninformative and
the posterior for carrying capacity was similarly wide and uninformative unless it was
assumed that the population was at carrying capacity in 1990 (Scenarios 1 and 2). The
posterior probability distribution for initial population size in the density-independent model
was also wide and uninformative. The model fit the single estimate of abundance reasonably
well, but there were large uncertainties in estimated population size during the study period
(Fig. 5). As a result of these uninformative posterior distributions the posterior distributions
for maximum population growth rate (Scenarios 1-3) and population growth rate (Scenario 4)
were also uninformative (Fig. 6).

The model fit the data on pregnancy rate and age at sexual maturity reasonably well (Figs 7
and 8), but the estimation of natural survival rates was problematic. It was difficult to obtain
convergent estimates for some of the survival parameters with both the Siler survivorship
model and discrete survival rate parameters. The posterior samples for several of the
parameters of the Siler model (Scenario 1) exhibited substantial autocorrelation probably due
to correlation in the estimates of these parameters and slow mixing in the McMC algorithm.
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Estimates of age-class-specific survival rates appeared to converge better with the density-
dependent model (Scenarios 2 and 3), but the density-independent model revealed a bimodal
posterior distribution for the annual survival rate of animals 20 years of age (Figs 4 and 9).
A preliminary run of a density-dependent scenario with age-class-specific survival rate
parameters also exhibited a multi-modal posterior but this only occurred near the end of the
McMC chain suggesting that convergence was problematic. Despite the convergence issues,
all model scenarios suggested a senescent decrease in survival for the oldest ages in the model
(Figs 10 and 11). The model underestimated the proportion of very young animals in the
sample of bycaught animals in all scenarios (Fig. 11). The Siler model provided continuous
predicted age distributions of mortality that were more visually appealing and likely more
realistic than the irregular distributions that resulted from age-class-specific survival rates.

The assessment could be most improved in the future by including one or more historical
estimates of abundance and more data on the age structure of natural mortality. Historical
estimates of abundance should improve the estimation of population growth rate during the
study period, although it is unlikely that there would be sufficient data to estimate maximum
population growth rate or carrying capacity. More data on the age structure of natural
mortality should improve the estimation of natural survival rates and may allow the
estimation of age-specific vulnerabilities to bycatch. A different model for age-specific
natural survival may also help improve parameter estimation.
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Figure 1. Marginal prior and posterior probability distributions of the estimated parameters
(Table 1) of the density-dependent model assuming that the population was at carrying
capacity in 1990 and with the Siler competing-risk model for survivorship (Scenario 1). Black
lines and grey bars are histograms of samples of 10,000 parameter values from the joint prior
and posterior, respectively.

Figure 2. Marginal prior and posterior probability distributions of the estimated parameters
(Table 1) of the density-dependent model assuming that the population was at carrying
capacity in 1990 and with age-class-specific survival parameters (Scenario 2). Black lines and
grey bars are histograms of samples of 10,000 parameter values from the joint prior and
posterior, respectively.
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Figure 3. Marginal prior and posterior probability distributions of the estimated parameters
(Table 1) of the density-dependent model with age-class-specific survival parameters and not
assuming that the population was at carrying capacity in 1990 (Scenario 3). Black lines and
grey bars are histograms of samples of 10,000 parameter values from the joint prior and
posterior, respectively.

Figure 4. Marginal prior and posterior probability distributions of the estimated parameters
(Table 1) of the density-independent model with age-class-specific survival parameters
(Scenario 4). Black lines and grey bars are histograms of samples of 10,000 parameter values
from the joint prior and posterior, respectively.
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Figure 5. Observed (points) and predicted (lines) total number of males and females during
the study period for all model scenarios (panels a-d represent Scenarios 1-4, respectively).
The solid line represents median values from the posterior sample and the dashed lines
represent the 95% interval of values from the posterior sample.
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Figure 6. Prior and posterior probability distributions for (maximum) population growth rate
in the absence of bycatch for all model scenarios (panels a-d represent Scenarios 1-4,
respectively). The distributions for population growth rate were derived from the samples of
maturity, birth and natural survival rates from the joint prior and joint posterior. The median
estimates and 95% posterior probability intervals are indicated on the plots.
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Figure 7. Observed pregnancy rate and predicted birth rate for the four model scenarios
(panels a-d represent Scenarios 1-4, respectively). The boxplot on the left represents the
distribution of observed pregnancy rates across years during the study period (point represents
the overall pooled pregnancy rate). The data point and dashed line on the right represent the
median and 95% interval of predicted values for birth rate (male and female calves) from the
posterior sample, respectively.
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Figure 8. Observed (points) and predicted (lines) sexual maturity ogive for the four model
scenarios (panels a-d represent Scenarios 1-4, respectively). Solid line indicates median
values from the posterior sample and dashed lines represent the 95% interval of values from
the posterior sample. The x-axis represents the mid-points of the indicated ages.
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Figure 9. Trace plots of the posterior samples for the 4th and 5th age-class-specific survival
rates in the density-independent model (Scenario 4).
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Figure 10. Observed (points) and predicted (lines) age structure of natural mortality for the
four model scenarios (panels a-d represent Scenarios 1-4, respectively). Observed values
represent overall proportions (data pooled across years) and predicted values represent
average proportions across all years of the study period. Solid line indicates median values
from posterior sample and dashed lines represent the 95% interval of values from the
posterior sample. Note that the model was fitted to the data from individual years separately,
not the pooled data presented in this figure.
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Figure 11. Observed (points) and predicted (lines) age structure of bycatch mortality for the
four model scenarios (panels a-d represent Scenarios 1-4, respectively). Observed values
represent overall proportions (data pooled across years) and predicted values represent
average proportions across all years of the study period. Solid line indicates median values
from posterior sample and dashed lines represent the 95% interval of values from the
posterior sample. Note that the model was fitted to the data from individual years separately,
not the pooled data presented in this figure.
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Management procedures and bycatch limits
Conservation objective(s)
The first step in generating safe bycatch limits for common dolphin and other small cetacean
populations is the establishment of a conservation objective(s) in quantitative terms. This is a
management decision. European policymakers have not established specific conservation
objectives for small cetaceans in the CODA study region, or indeed anywhere. Therefore, for
the purposes of this work we followed the approach taken in the SCANS-II project and
adopted the interim conservation objective agreed by ASCOBANS: To allow populations to
recover to and/or maintain 80% of carrying capacity in the long term.

Carrying capacity is defined as the population size that would theoretically be reached by a
population in the absence of bycatch. Note that we do not need to know what this carrying
capacity actually is to develop management procedures to set safe bycatch limits.

The ASCOBANS interim conservation objective is partially quantitative but two factors are
not fully defined.

First, “long term” is not specified. We adopted a period of 200 years for the development of
the management framework. This long period was chosen to allow sufficient time for heavily
depleted populations to recover even in the absence of bycatch if natural rates of increase
were low. However, because the status of populations in the shorter term is also of interest for
conservation, it is also important to consider any delay in recovery of depleted populations
due to continuing bycatch. Because of this, the performance of the management procedures
with respect to recovery delay is presented in our results below.

Second, the most obvious quantitative interpretation of “recovering to and/or maintaining
80% of carrying capacity” is that this is an expected target that should be reached on average.
This is important because, as described below, the management procedures developed must
be “tuned” to achieve the conservation objective. Our first tuning therefore ensures that the
procedures reach or exceed the conservation objective target on average (i.e., 50% of the
time).

Alternatively, one could interpret the ASCOBANS interim conservation objective as meaning
that the population should recover to and/or be maintained at or above 80% of carrying
capacity. This could be implemented as a requirement to reach the target level a higher than
average percentage of the time, although this percentage is not specified. To capture this
alternative interpretation, we also developed management procedures that were tuned to
achieve the conservation objective 95% of the time. This is a stricter target and this tuning
produces a more conservative procedure.

In addition, although the approach used to develop the management procedures explicitly
takes account of uncertainty in our knowledge, the limits to this uncertainty cannot be
explicitly defined by the conservation objective and must be determined by expert judgement
of the plausibility of the extent of our uncertainty. As described below, we developed
management procedures that were tuned to meet the conservation objective assuming a
certain level of uncertainty (values for maximum population growth rate and population level
resulting in maximum productivity that were believed to be conservative) and then tested the
robustness of the procedures to additional sources of uncertainty, following the approach used
in the original development of the CLA and PBR procedures.
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An extreme alternative is to tune the procedures to meet the conservation objective in the face
of a “worst case” scenario. By definition, this scenario has lower plausibility than the
scenarios for the other tunings specified above but, for comparison, we also present results for
this much more conservative approach.

It is critically important to note that although the management procedures developed here are
generic, the specific results presented below are entirely dependent on the conservation
objective adopted. If it is determined that alternative and/or additional
conservation/management objectives are appropriate, the management procedures developed
can easily be tuned to the new objective(s) when a final policy/management decision is taken.

Tuning of the management procedures
The operating model was used to tune the management procedures so that one would expect
to achieve the conservation objective in practice. As described above, three different tunings
were developed. All three tunings were based on a single subpopulation inhabiting a single
management area. The operating model was used to simulate this subpopulation subject to
bycatch as limited by the management procedures for a period of 200 years. Population status
at the end of the 200-year simulation period was examined to determine whether the
conservation objective was achieved. If the objective was not achieved then the values of the
tuning parameters of the management procedures were adjusted and the simulation was run
again. This process was iterated until the conservation objective was achieved. In its original
development by the IWC, the CLA procedure was tuned by fixing the values of the tuning
parameters  and  and adjusting the value of Q. Aldrin et al. (2006, 2008) advocated fixing Q
at 0.5 and adjusting  to tune the CLA. They pointed out that it was impossible to tune the
CLA to achieve final depletions <0.7 over a 300-year timeframe when  and  were fixed at
their default tuned values. This was because with infinite data the posterior distribution of
nominal bycatch limits is degenerate to a single value and is therefore not affected by Q. We
chose to use  to tune the CLA following Aldrin et al. (2008). However, Q was fixed at 0.4 to
maintain the conservative feature that greater variance in the posterior distribution of nominal
bycatch limits (for example because of greater uncertainty in abundance estimates) resulted in
a lower bycatch limit. The internal protection threshold, , was set to 0.5, the assumed
maximum net productivity level in the baseline version of the operating model (z=1).

The first tuning was developed in a manner similar to the tuning of the CLA procedure by the
IWC. All parameters of the operating model were set at their baseline values (Table 2). Initial
population status (population size as a proportion of carrying capacity) was set to 0.99. For
the CLA procedure a 15-year historical time-series of bycatch was assumed that reduced the
population to 99% of carrying capacity at the beginning of the simulation period. Maximum
population growth rate was assumed to be 4% per year with a density-dependence
relationship that resulted in maximum net productivity at 50% of carrying capacity. A
maximum population growth rate of 4% per year was the default value used for cetaceans in
the original development of the PBR procedure and this value was considered conservative
for harbour porpoise by a joint IWC/ASCOBANS working group (International Whaling
Commission 2000). The maximum rate at which common dolphin populations can grow is not
well understood. Reilly and Barlow (1986) suggested that the maximum growth rate of
dolphin populations was probably <9% per year based on general Leslie matrix models. In
another Leslie matrix modelling study Woodley (1993) suggested that the maximum
population growth rate for common dolphins was probably 4%. Gerrodette et al. (2008)
reported trends in dolphin abundance in the eastern tropical Pacific as high as 11% per year
with an estimate of almost 5% for common dolphins between 1986 and 2006. Given the
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results of these studies we chose 4% per year as a conservative maximum population growth
rate for common dolphins. A maximum net productivity level of 50% of carrying capacity is
conservative in that it results in a lower absolute maximum sustainable removal than a higher
maximum net productivity level would. The management procedures were then tuned under
this scenario so that the median population status after 200 years was 80%. This tuning is
therefore appropriate for a conservation objective of maintaining the population at 80% of
carrying capacity in the long term.

The second tuning was developed in exactly the same way except that the management
procedures were tuned so that there was a 95% probability that population status was 80%
after 200 years. This is similar to the way in which the PBR procedure was tuned in its
original development except that in the PBR development case it was tuned to be 50% of
carrying capacity, the lower limit in the range 50-70%, and not a single target level. Our
second tuning is therefore appropriate for a conservation objective of maintaining the
population at or above 80% of carrying capacity in the long term.

The third tuning was developed considering a “worst-case” scenario. Population parameter
values were identical to those used in the first two tunings and all parameters of the operating
model were set at their baseline values except two. Exploratory simulations indicated that the
two parameters with the largest effects on performance (other than maximum population
growth rate and maximum net productivity level) were bias in survey estimates of population
size and bias in estimates of bycatch. Worst-case values for the above parameters were chosen
as follows. A 50% overestimate was chosen as the worst-case bias in absolute estimates of
population size. It was assumed that future surveys would be conducted using a methodology
similar to the SCANS-II and CODA surveys; these were robust, design-unbiased
methodologies that were highly unlikely to systematically overestimate population size by
more than 50%. A 50% underestimate was chosen as the worst-case bias in estimates of future
bycatch (i.e., actual bycatch would be twice the estimated bycatch). The estimation of bycatch
is fraught with uncertainty, but this tuning of the procedures assumed that estimates of
bycatch in the future would by design not underestimate bycatch by more than 50%. Initial
population statuses ranging from 0.05-1.00 were considered for this tuning. The management
procedures were then tuned so that there was a 95% probability that population status was
0.80 after 200 years (under this worst-case scenario). This tuning is therefore appropriate for
a conservation objective of maintaining the population at or above 80% of carrying capacity
in the long term under a worst-case scenario.

The values of the tuning parameter (F) for the three tunings of the PBR procedure were 0.53,
0.38 and 0.12, respectively. The values of the tuning parameter () for the three tunings of the
CLA procedure were 3.40, 1.89 and 0.50, respectively.

It is important to note that the performance of the management procedures beyond 200 years
was not examined.

Figs 12 and 13 highlight the difference in the three tunings of the procedures in terms of the
conservation objective. In the first tuning, PBR1 and CLA1, the population is maintained at
80% of carrying capacity, as defined by the objective. In the second tuning, PBR2 and CLA2,
the population is maintained at a higher percentage of carrying capacity (~85-90%) because of
the requirement to achieve the conservation objective 95% of the time. In the third tuning,
PBR3 and CLA3, the population is maintained at an even higher percentage of carrying
capacity (~95%) because of the additional requirement to achieve the conservation objective
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under a “worst-case” scenario. As expected, long-term population status was highest and
delay in recovery was shortest under the third tuning of the procedures (Fig. 12).

The delay in recovery of depleted populations to 80% of carrying capacity under the CLA
procedure tended to be shorter than under the PBR procedure for a given tuning and initial
population status (Fig. 12). This was due to the faster short-term recovery of highly depleted
populations under the CLA procedure because of its internal protection mechanism (Fig. 13).

It is important to note that the specific values of the tuning parameters for the tunings
presented here are different than those for the harbour porpoise tunings developed during the
SCANS-II project and more recent harbour porpoise tunings presented by Winship (2009).
These differences in the values of the tuning parameters arose because of technical differences
in the implementation of the management procedures (e.g., PBR equation) and differences in
the operating model (e.g., assumed observation error distribution, life history of common
dolphins). Differences between the assumed life history of common dolphins and the assumed
life history of harbour porpoise—lower birth rate, higher survival and older age at sexual
maturity for common dolphins, but identical overall population growth rate—resulted in
slightly higher bycatch limits for common dolphin populations. The higher bycatch limits
arose because of the way that bycatch is removed from the population in the operating model.
Bycatch is removed after natural mortality. Thus, when natural survival rates are higher (as in
the common dolphin model) a given absolute bycatch will result in a lesser bycatch mortality
rate for the survivors of natural mortality. As a result, it is assumed that the population can
sustain slightly more bycatch in absolute terms. Nevertheless, the removal of bycatch after
natural mortality is still a conservative approach: it assumes that none of the animals that are
bycaught in a given year would have died naturally that year anyway.

The tunings of the management procedures presented here have relatively low precision
compared to tunings of the CLA procedure developed by the IWC (e.g., International
Whaling Commission 2002). However, the precision does not affect the relevance of our
results. Higher precision tunings could be performed when a management procedure is
finalised.
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Figure 12. Performance of three tunings of the PBR and CLA management procedures under
the baseline scenario with respect to the conservation objective (long-term population status)
and recovery delay. Points represent median results from 100 simulations and error bars
represent the 90% interval of simulation outcomes. Population status is defined as population
size as a proportion of carrying capacity. The horizontal dashed lines indicate the
conservation objective: population status = 80%. Recovery delay is defined as the delay in
recovery of a population to 80% of carrying capacity relative to a scenario without bycatch.
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Figure 13. Trajectories of population status and bycatch (as proportion of population size) for
three tunings of the PBR and CLA management procedures under the baseline scenario.
Population status is defined as population size as a proportion of carrying capacity. Results
are shown for two initial population statuses: 0.1 (left column) and 0.99. Solid lines represent
median results from 100 simulations and dotted lines represent the 90% interval of simulation
outcomes. The horizontal dashed lines indicate the conservation objective (population status =
80%).
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Generic performance-testing simulations
Baseline and worst-case performance-testing simulation trials were conducted for all tunings
and procedures, but the full set of generic trials was only conducted for the first tuning of the
PBR procedure. Winship (2009) presented the detailed results of the full series of generic
performance-testing simulation trials of all three tunings of the PBR and CLA procedures for
harbour porpoise. The tunings and operating model used by Winship (2009) were identical to
those presented here for common dolphins other than the aforementioned difference in life
history and the resulting difference in the specific values of the tuning parameters. Thus, the
general results of those simulation trials are applicable to the tunings presented here for
common dolphins. The results of all trials conducted in this study were very similar to the
results of the corresponding trials of the harbour porpoise tunings confirming that the results
of the harbour porpoise trials are generally applicable to the tunings for common dolphins.

Bycatch limits
Before implementing a tuned management procedure in practice it should be subjected to
species-specific simulation trials to test its performance in light of all of the information that
is available for individual species.

One of the most important biological aspects of species-specific simulation trials is population
structure. With respect to population structure, a conservative management approach is to
create management areas no larger than the size of area within which animals are believed to
mix and interbreed freely (Hammond and Donovan In press). Based on the available
information about common dolphin population structure in the Northeast Atlantic, the
combined CODA and SCANS-II survey area is potentially an appropriate management area
(Murphy et al. 2008).

We calculated example bycatch limits for common dolphins in this area using the tuned PBR
and CLA management procedures and the combined SCANS-II/CODA abundance estimate,
180,075 (CV=0.272). We treated this combined abundance estimate as applying to the
summer of 2006—halfway between the SCANS-II and CODA surveys. The CLA
management procedure can also make use of estimates of previous bycatch so we calculated a
second set of bycatch limits using the tuned CLA procedure, the abundance estimate and the
time-series of bycatch estimates presented in Table 5. Table 6 presents these example bycatch
limits.

It is important to recognise that these bycatch limits are entirely dependent on the stated
conservation objective, on the tunings that were used to achieve it under different
interpretations, and on the data that were used to initiate the procedure. For example, bycatch
limits under the CLA procedure were lower when historical bycatch was incorporated. As
discussed above the historical bycatch time-series is likely an underestimate. Incomplete
historical bycatch time-series can result in unsatisfactory performance of the first and second
tunings of the CLA management procedure (Winship 2009). These bycatch limits are
therefore indicative and should not be used for management purposes. Before that can happen
a series of steps must be taken (as described below), initiated by agreeing conservation
objective(s) at the policy level. The management procedures that were developed can easily
be tuned to new conservation objectives when a final policy decision is taken.
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Table 6. Example bycatch limits for common dolphins in the combined SCANS-II/CODA
survey area. Bycatch limits were calculated using three tunings each of the PBR and CLA
management procedures. The PBR procedure operated solely on the abundance estimate,
while two sets of limits are presented for the CLA procedure: one based solely on the
abundance estimate and one based on the abundance estimate and the time-series of historical
bycatch up to mid-2006 (Table 5).

PBR tuning CLA tuning
Historical bycatch time-series

1 2 3 1 2 3

no 1524 1092 345 1909 1061 280
yes - - - 1547 860 227

Conclusions and recommendations
PBR or CLA management procedure?
The tuned PBR and CLA management procedures developed here are similar but there are
some key differences. The only input to the PBR procedure is a single estimate of abundance,
whereas the CLA procedure makes use of information on bycatch and on multiple estimates
of abundance, if available, to give a more informed assessment of population status. As
documented above, there are estimates of previous common dolphin bycatch available for
several fisheries the Northeast Atlantic (Table 5). Potentially, there are also estimates of the
historical abundance of common dolphins in the Northeast Atlantic. For example, Cañadas et
al. (in press) present an absolute abundance estimate for common dolphins in 1995 in the W
Block of the North Atlantic Sighting Survey (NASS), 273,159 (CV=0.26). This survey block
was offshore and extended further west than the CODA survey. In general, areas that have
been surveyed previously for common dolphins differ from the SCANS-II/CODA survey area
(Murphy et al. 2008, Cañadas et al. in press) and these differences will have to be taken into
account when combining abundance estimates in an assessment or management procedure
framework. Nevertheless, the availability of historical data on bycatch and abundance means
that there is an advantage to using the CLA procedure.

Another feature of the CLA procedure is its internal protection mechanism, which enhances
the recovery of depleted populations by setting bycatch to zero if the population is estimated
to be, in our version, <50% of carrying capacity. The PBR procedure cannot implement such
an internal protection mechanism because it relies on a single estimate of population size and
cannot, therefore, estimate the level of the population relative to carrying capacity.
An advantage of the PBR procedure is its simplicity but this simplicity does not give any
advantage in the context of its use within the management framework presented here.

We conclude that the features of the CLA procedure and the advantages that these confer are
sufficient for it to be considered as the best management procedure for common dolphins in
the Northeast Atlantic.

Which tuning?
The three tunings developed allow for three interpretations of the conservation objective
adopted from ASCOBANS (to allow populations to recover to and/or maintain 80% of
carrying capacity in the long term). The first tuning of the management procedures is a robust
mechanism for setting limits to bycatch to achieve the conservation objective of allowing a
population to recover to and be maintained at 80% of carrying capacity. The second tuning
achieves the conservation objective of maintaining a population at or above 80% of carrying
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capacity. Satisfactory performance of the first and second tunings depends on the availability
of data series of historical and current estimates of abundance and bycatch that are essentially
unbiased. The third tuning is a highly conservative approach to maintaining a population at or
above 80% of carrying capacity in a worst case situation where time series of estimates of
abundance and bycatch are considerably biased upwards and downwards, respectively.
If input data are judged to be of sufficient accuracy then either the first or the second tuning is
appropriate. If consistent bias of the magnitude tested in either abundance or bycatch were
considered plausible, then the third tuning would be more appropriate. We recommend that
for application/implementation for any species in a particular region, the judgement of which
tuning to use be based on an assessment of the available information. This may include
conducting more simulation testing in cases where it is not clear whether or not a procedure is
robust to plausible uncertainties. If the third tuning were adopted because of such uncertainty,
more information on, in particular, bycatch, would allow a re-evaluation in the future.

Next steps
Before a management procedure can be implemented for a particular species in a particular
region, the following steps need to be taken:

1. Agreement by policy makers on the exact conservation/management objective(s);
2. Agreement by policy makers to implement the procedure for one or more species in one

or more regions;
3. Consideration by scientists of whether or not the available information for each species

indicates that there is a need to conduct further simulation testing to examine uncertainties
that may not have been fully explored;

4. In particular, if there is evidence for sub-population structure, consideration by scientists
of any further simulation testing required and/or identification of any sub-areas that may
be considered to contain sub-populations;

5. In addition, if there is evidence of historical bycatch but no data, consideration by
scientists of any further simulation testing required including the generation of appropriate
data series based on the best available information;

6. Final determination by scientists, based on the results of Steps 3 - 5, of how to implement
the procedure for each species/region;

7. Agreement by policy makers to implement the procedure;
8. Generation by scientists of bycatch limits for a specified period (e.g., 5 years);
9. Establishment of a mechanism for feedback of information from bycatch monitoring

programmes to inform the next implementation of the procedure when the period for
which bycatch limits have been set expires.

In addition, the following step will need to be considered in the future:
 Planning for an absolute abundance survey in (approximately) 2015.

Step 1 should clearly be made at the European level. Similarly, Step 2 should ideally be made
collectively although most species do not occur in all parts of the European Atlantic. Steps 3 –
6 can be done by the team of scientists that have developed the procedure or by others under
their supervision/instruction. The amount of work involved depends on the species. The work
accomplished in the SCANS-II and CODA projects for the harbour porpoise and common
dolphin means that for these species these steps could be completed fairly rapidly; other
species will take longer. Step 7 is another that should ideally be made at the European level;
Step 8 can then be taken immediately. Step 9 is very important because removals from a
population need to be incorporated when the procedure is re-implemented and this new
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information (or lack of it) may determine which tuning of the procedure is implemented in the
future.
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