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INTRODUCTION :

Recently, there has been a huge amount of scientific literature focusing on marine predator
spatial distribution, with particular attention paid on the spatial scale(s) at which it was
structured (Schneider & Piatt 1986 ; Russel et al. 1992 ; Fauchald et al. 2000). Spatial
structure of animal population is one key parameter to understand how animals distribute in
space and how they interact with the various components of their surrounding environment.
The theory of hierarchical patch dynamics (Kotliar & Wiens 1990) has recently proposed an
ecological framework to study the spatial distribution of animals. It states that the spatial
distribution of animal populations can be viewed as a succession of nested patches, with small
patches of high density located into larger patches of smaller density. Each patch is issued
from the interaction between animals and environmental parameters structured at the same
spatial scale than the patch.

In this study, our aim is to use CODA data in order to investigate the spatial structure of the
distribution of Fin Whales (FW) Balaenoptera physalus, a species commonly encountered in
the pelagic area of the Bay of Biscay which is also of strong conservation interest. There is an
important benefit to identify the oceanographic factors determining the spatial structure of
FW populations, to better understand the ecological processes affecting their spatial
distribution in order to in fine achieve accurate spatial prediction of FW distribution at various
dates and at relevant scale(s) for scientists and managers. To this end, we used a set of
oceanographic covariates, each being spatially structured at different scales.

First, the spatial scale at which the population of FW was structured in the Bay of Biscay was
investigated using spatial correlograms (Bjornstadt & Falck 2001). Second, the spatial
distribution of FW was filtered at each scale with filtering kriging (Wackernagel et al. 2003).
Filtering kriging consist in a spatial decomposition of the data that provides for a given
dataset a number of variables (or filters) that describes the spatial distribution of the species at
a given scale. In a third step, various covariates were extracted from satellite-derived
products, and their associated gradients were calculated. Again, using spatial correlograms,
the scale at which each environmental variable was structured has been calculated. Endly,
each spatial filter was modelled using Generalised Additive Models (Wood & Augustin 2001)
and environmental covariates spatially structured at an equivalent scale, in order to obtain one
spatial predictive model relevant from each spatial scale at which FW populations were
structured. These models were used to identify which environmental parameters influenced
FW spatial distribution at which scales, and outputs of these models shows the areas where
environmental parameters are the most suitable for FW.



DATA ANALYSIS:

Pre-processing the FW dataset:

The dataset we used was constituted of Fin Whale observations carried out during CODA
cruises by primary observers only. In a first time, transects were sliced in a succession of
small sized segments (0.1 decimal degree long, ~5.5km), each containing a number of
observed FW individuals. Then a correction of segmented data has been carried out. This
correction has been achieved using distance sampling methods, with a hazard rate model
including factor sightability and observation platform height as covariates.

Corrected data were carefully examined in order to determine whether or not a segmented,
corrected dataset was suitable for inclusion in a spatial model of species relative density. The
main subject of our study is to understand which environmental factors influence FW
distribution, in order to identify the areas where these factors are the most suitable for FW
concentration. To do so, any strong distortion of the original dataset should be avoided, so
that the modelled species–environment relationships truly reflect ecological mechanisms, as
far as possible. Hence, the use of corrected segmented data is possible if such data are
biologically meaningful. Therefore, corrected data were evaluated according to two
parameters: the maximum density of FW per segments and the spatial structure existing in
FW corrected data. We assume that a “biologically meaningful” correction should not affect
strongly the spatial structure of the segmented data, and that maximum FW densities should
remains relatively low, as FW are not known to form huge aggregations of individuals at the
same location at sea.

Analysing the spatial structure of FW populations:

We used spatial correlograms to test for spatial autocorrelation in the FW dataset.
Correlograms were computed with the NCF package (Bjornstadt 2006), available at
http://asi23.ent.psu.edu/onb1/, and using R software (R development core team 2006). In
addition, experimental spatial variograms were also computed with the gstat package
(Pebesma & Wesseling 2003) to get additional information on the scales at which the FW
dataset was spatially structured, and a variogram model was fitted to this experimental
variogram. The adjustment criterion of the variogram model was weighted least squares,
where the weights are proportional to the number of point pair for each distance lag. Once
relevant spatial scales were identified, spatial filters were extracted with filtering kriging (see
Wackernagel 2003 for a complete description of the theory of spatial filters). In a few words,
filtering kriging decompose the spatial densities into n+1 component, where n is the number
of spatial scales. The first component corresponds to the “nugget” of the variogram, that is the
non-spatial component of the variability existing in the data. Spatial predictions associated to
this first component result in a constant that is the expected animal density calculated on the
basis of the non-spatial variability of the data. In ecological term, this corresponds to a “basal”
density of animals over the study area. In addition from this “basal” density, the spatial filters
are gaussian, spatially structured random-fields that describe how the spatial variability
modulates the basal density, and only contains spatial effects. There is one spatial filter per
spatial structure modelled with the variogram. Variogram modelling and filtering kriging was
achieved with hand-made R routines designed by Edwige Bellier. See Bellier (2007) for
further details.

The oceanographic covariates:

The set of covariate was extracted daily and then averaged for 15 days time periods, from the
OCEANWATCH database (http://las.pfeg.noaa.gov/oceanWatch/oceanwatch_safari.php).
The set of covariate was constituted of data on Sea Surface Temperature (SST); Sea Surface



Height anomaly (SSHa); Surface Wind Strength (SWS); Surface Wind Divergence (SWD);
Surface Chlorophyll a (CHLa) and Bathymetry (BAT). The associated gradients were
computed using hand-made routines under R software. The spatial structure of each oceanic
covariate was also examined with spatial correlograms.

Modeling FW spatial distribution:

Once the spatial structure existing in FW dataset and in environmental covariates identified,
the expected “basal” density of FW (corresponding to the variogram nugget) has been
calculated, and n spatial filters were extracted, n being the number of spatial structure
identified in the FW dataset. Then, n spatial models were built, using Generalised Additive
Models (Wood & Augustin 2001). These models assumed a Gaussian distribution for the
spatial filters, a sustainable hypothesis since spatial filters issued from filtering kriging are
gaussian random fields. According to the results of spatial correlograms, environmental
covariates were also splitted in n groups according to their spatial structure. For each spatial
model, all covariates presenting a spatial structure at a similar scale than the scale of the
modelled spatial filter were tested, and the covariates used in each final spatial model were
chosen according to a forward selection procedure. The final spatial models were then used to
predict FW distribution at their respective scales, and these scale-dependent predictions were
combined (summed) together and to the expected basal FW density in order to highlights the
areas the most suitable for FW (i.e. potential distribution areas) at various dates (from June to
August, for 15-days time periods).

RESULTS :

Pre-processing the FW dataset:

The uncorrected, segmented data set is shown in fig 1. Because FW observations were near-
exclusively carried out in the southern part of the study area, we focused on it for further
statistical analysis (Fig 1). The comparison between corrected and uncorrected data (Fig 2)
showed that the number of FW was locally multiplied by a factor 3, with in some cases up to
25 FW predicted in the same segment (that is a density of near 5 FW per kilometre).
Moreover, the linear relationships between corrected and uncorrected data was strongly
significant (p<2e-16 R²=0.87). In addition, spatial variograms of uncorrected and corrected
segmented data displayed quite different pattern (Fig. 3), with variogram on uncorrected data
showing a small-scale spatial structure at 0.5 degree, while patterns on the variogram issued
from corrected data showing chaotic variations. In these conditions, we considered that spatial
models to identify the environmental parameters affecting FW distribution should be built
using uncorrected data, because data correction lead to irrelevant local abundance of FW and
moreover strongly deteriorates the spatial structure existing in the dataset. In addition, since
uncorrected data correlates very well to corrected ones (Fig. 2), there is few chances that
visibility bias induces spatial heterogeneities in the data that could lead to mis-identification
of species-environment relationships with uncorrected data. By contrast, the artefacts issued
from correction (i.e. artificially increasing FW local densities) may prevent from identifying
species-environment relationships when using corrected data.

Spatial Structure of FW distribution:

The spatial correlogram (fig 4) carried out on the FW uncorrected dataset shows a strong
positive spatial autocorrelation in the first distance class (up to 0.5 decimal degree), and a
more diffuse, but always significant, positive spatial autocorrelation up to 2.5 decimal degree.
The observed negative spatial autocorrelation at a scale of 4-8 decimal degree probably results
from the large absence area in the north (see fig 1) and is not relevant for our study. The result



obtained from the correlogram lead us to consider two spatial scales for the spatial
distribution of FW, one small scale spatial structure at 0.5 decimal degree (near 30km) and
another between 0.5 and 2.5 decimal degree (near 150 km). Therefore, we achieved a spatial
decomposition of the FW dataset at these two scales with filtering kriging. The nugget
component of the filtering kriging (i.e. the expected non spatial basal relative density of FW
in the area) was equal to 0.33 individuals per segment. In addition, the Fig. 5 show the spatial
patterns issued from the large and fine scale spatial filters, together with the data.

Spatial structure of oceanographic covariates:

The characterisation of the spatial structure of the oceanic covariates has been achieved with
spatial correlograms and the results are reported in the table 1. Since FW distribution showed
2 spatial structure (one at 0.5 decimal degree, and the other from 0.5 to 2.5 decimal degree),
our spatial covariates were splitted into two groups (table 1) in order to built two spatial
models, one for each spatial filter. Covariates tested for inclusion in the spatial model at large
scale are : bathymetry (TOPO), sea surface chlorophyll a (CHLA) and its associated gradient
(CHLAg), sea surface temperature (SST), sea surface height anomaly (SSHg), and wind
vector modulus (~wind strength, WINM). Covariates tested for inclusion in the small scale
spatial model are bathymetry gradient (TOPOg), sea surface temperature gradient (SSTg), sea
surface height anomaly gradient (SSHg), wind divergence (index of eckman pumping,
WIND) and its associated gradient (WINDg), and wind vector modulus gradient (WINMg).

Scale dependent modelling of FW distribution:

Each spatial filter has been modelled with a set of environmental covariates presenting an
equivalent spatial structure. The final set of covariates has been chosen following a forward-
selection procedure and is based on the minimisation of the score of the gcv (Generalised
Cross Validation) criterion. Each covariate received a penalty of maximum 5 knots to avoid
data overfitting. Covariates retained for the large-scale model were WINM, CHLA, TOPO,
SST and SSH (see Fig. 6). The large-scale model explained 42% of the deviance existing in
the large-scale filter of FW spatial distribution and performed quite well (see fig. 7 for the
diagnostic plots of the large scale model). Covariates retained for the small-scale model were
WINDg, SSHg and SSTg, (Fig 8.) that is three spatial gradients issued from dynamic,
environmental covariates. This fine-scale model only explained 8.31% of the deviance
existing in the data, but again diagnostic plots (Fig. 9) showed that the model performed fairly
well, even if probably less explanative than the large-scale one.

Scale dependent prediction of FW distribution:

The large and fine-scale predicted distribution of FW in the Bay of Biscay is shown in Fig 9
and 10, respectively, and Fig 11 shows the global predictions that result from the combination
of the expected basal density of FW and of both spatial models. These predictions are
provided for 15-days time period that range from June 2006 to August 2006. These maps
shows that both the large-and fine-scale distribution of FW is subject to temporal variability,
but three areas at large scale are identified as presenting environmental conditions suitable for
FW distribution. These areas are located in the south-western corner of the study area, in the
northern, central part and in the western-central part. Predictions issued from the large-scale
models are more difficult to characterise but suggest that fine-scale patterns may be a factor
that can add an important complexity to FW spatial distribution. Nevertheless, the global
prediction of FW spatial distribution (Fig 11) seems to be highly influenced by large-scale
patterns.



DISCUSSION :

The presented modelling approach is innovative in the sense that it focuses only on potential
ecological processes driving FW distribution, by looking exclusively at environmental
covariates that truly characterises their oceanic environment. Among the oceanic factors that
were identified at large scale, we can notice the strong positive relationships between FW and
Wind strength (WINM) (fig. 6), the positive relationships between FW and SST with an
optimum in sea surface temperature around 19°C; and their association with extreme values
of SSH. We can hypothesize that strong winds are a good index of surface water mixing that
may enhance productivity in the water-column, that the 19°C optimum may be related to an
optimum for the growth, reproductive success or survival success to their main preys; and
that extreme SSH values indicates retention areas where resources may be aggregated. At
small scale however, the identified relationships between FW and oceanic covariates were
less convincing, probably because FW distribution at small scale is more likely to be
influenced by other biological covariates that are closer to FW in the pelagic food web, such
as zooplankton or small schooling fishes. Therefore, it is important to separate both large and
small scale effects in the modelling process for management purpose. Indeed, the inference
that can be drawn from our large-scale maps is more robust for FW than the inference that can
be drawn from the small-scale one, given the performance of our large- and small- scale
models. We then recommend, for management purpose, that proposal for example of
protected areas or of area of controlled use should be based on the results provided by our
large-scale maps only. Moreover, we should mention that the proposed modelling exercise is
based on one survey only, carried out at a punctual date. Therefore, the situation described by
the models only concerns the studied time period and all predictions obtained outside this
time periods should be interpreted as “potential areas” for FW given that their relationships
with the oceanic covariates remains the same than those measured during the survey. It is
clear that such modelling exercise would greatly benefit from further surveys carried out at
different seasons, in order to take the seasonal variability existing in the FW population into
account during the modelling exercise.
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Fig 1. CODA study area, with bathymetry (coloured levels) and FW observations (purple
squares). The polygon delineates the area on which spatial analysis were carried out.



Fig 2. statistical relationships between uncorrected segmented data and segmented data
corrected for visibility bias.



Fig 3. Experimental variograms showing the spatial structure of the variance existing in
uncorrected segmented data and in segmented data corrected for visibility bias.



Fig 4. Correlogram of uncorrected, segmented data, and Variogram models fitted to the
experimental variogram of FW data. The full variogram model (full line) is a nested model
composed of a small-scale model (segmented lines) and a large-scale model (dotted lines).



Fig 5. Spatial filters (red symbols) extracted at large and small scale, together with the
segmented raw data (blue symbols)



Fig 6. Relationships modelled between the large-scale filter of FW distribution and the
environmental covariates.



Fig 7. Diagnostic plots of the large-scale model



Fig 8. Relationships modelled between the fine-scale filter of FW distribution and the
environmental covariates



Fig 9. Diagnostic plots of the fine-scale model



Fig 10. Spatial prediction of FW distribution issued from the large-scale model, for different
time periods of 15 days. Black squares show the data.



Fig 11. Spatial prediction of FW distribution issued from the small-scale model, for different
time periods of 15 days. Black squares show the data.



Fig 12. Final predictions maps of FW relative density, obtained by summing the expected
basal density issued from the non-spatial variability of FW data, and the spatial effects issued
from spatial models at large and fine scale. Black squares show the data.



Table 1. Summary of the spatial structure of the environmental covariates, in decimal degree.

Covariate scale to be related to…

TOPO 2 large scale filter

TOPOg 0.4 small scale filter

CHLA 3 large scale filter

CHLAg 2 large scale filter

SST 5 large scale filter

SSTg 0.5 small scale filter

SSH 2 large scale filter

SSHg 0.9 small scale filter

WIND 0.9 small scale filter

WINDg 0.7 small scale filter

WINM 2.5 large scale filter

WINMg 0.4 small scale filter


